You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
NameMacrophage colony-stimulating factor 1 receptor
Synonyms
  • CSF-1 receptor
  • CSF-1-R
  • CSF-1R
  • FMS
  • M-CSF-R
  • Proto-oncogene c-Fms
Gene NameCSF1R
OrganismHuman
Amino acid sequence
>lcl|BSEQ0001700|Macrophage colony-stimulating factor 1 receptor
MGPGVLLLLLVATAWHGQGIPVIEPSVPELVVKPGATVTLRCVGNGSVEWDGPPSPHWTL
YSDGSSSILSTNNATFQNTGTYRCTEPGDPLGGSAAIHLYVKDPARPWNVLAQEVVVFED
QDALLPCLLTDPVLEAGVSLVRVRGRPLMRHTNYSFSPWHGFTIHRAKFIQSQDYQCSAL
MGGRKVMSISIRLKVQKVIPGPPALTLVPAELVRIRGEAAQIVCSASSVDVNFDVFLQHN
NTKLAIPQQSDFHNNRYQKVLTLNLDQVDFQHAGNYSCVASNVQGKHSTSMFFRVVESAY
LNLSSEQNLIQEVTVGEGLNLKVMVEAYPGLQGFNWTYLGPFSDHQPEPKLANATTKDTY
RHTFTLSLPRLKPSEAGRYSFLARNPGGWRALTFELTLRYPPEVSVIWTFINGSGTLLCA
ASGYPQPNVTWLQCSGHTDRCDEAQVLQVWDDPYPEVLSQEPFHKVTVQSLLTVETLEHN
QTYECRAHNSVGSGSWAFIPISAGAHTHPPDEFLFTPVVVACMSIMALLLLLLLLLLYKY
KQKPKYQVRWKIIESYEGNSYTFIDPTQLPYNEKWEFPRNNLQFGKTLGAGAFGKVVEAT
AFGLGKEDAVLKVAVKMLKSTAHADEKEALMSELKIMSHLGQHENIVNLLGACTHGGPVL
VITEYCCYGDLLNFLRRKAEAMLGPSLSPGQDPEGGVDYKNIHLEKKYVRRDSGFSSQGV
DTYVEMRPVSTSSNDSFSEQDLDKEDGRPLELRDLLHFSSQVAQGMAFLASKNCIHRDVA
ARNVLLTNGHVAKIGDFGLARDIMNDSNYIVKGNARLPVKWMAPESIFDCVYTVQSDVWS
YGILLWEIFSLGLNPYPGILVNSKFYKLVKDGYQMAQPAFAPKNIYSIMQACWALEPTHR
PTFQQICSFLQEQAQEDRRERDYTNLPSSSRSGGSGSSSSELEEESSSEHLTCCEQGDIA
QPLLQPNNYQFC
Number of residues972
Molecular Weight107982.955
Theoretical pI6.33
GO Classification
Functions
  • cytokine binding
  • protein homodimerization activity
  • macrophage colony-stimulating factor receptor activity
  • ATP binding
Processes
  • negative regulation of cell proliferation
  • transmembrane receptor protein tyrosine kinase signaling pathway
  • forebrain neuron differentiation
  • multicellular organismal development
  • hemopoiesis
  • positive regulation of cell proliferation
  • macrophage colony-stimulating factor signaling pathway
  • cytokine-mediated signaling pathway
  • inflammatory response
  • mammary gland duct morphogenesis
  • phosphatidylinositol metabolic process
  • regulation of cell shape
  • monocyte differentiation
  • phosphatidylinositol-mediated signaling
  • olfactory bulb development
  • osteoclast differentiation
  • positive regulation of ERK1 and ERK2 cascade
  • cell proliferation
  • positive regulation of cell motility
  • protein autophosphorylation
  • positive regulation of chemokine secretion
  • macrophage differentiation
  • axon guidance
  • positive regulation of osteoclast differentiation
  • positive regulation of tyrosine phosphorylation of Stat3 protein
  • innate immune response
  • peptidyl-tyrosine phosphorylation
  • positive regulation of protein serine/threonine kinase activity
  • skeletal muscle tissue development
  • positive regulation of protein phosphorylation
  • positive regulation of protein tyrosine kinase activity
  • cellular response to cytokine stimulus
  • regulation of actin cytoskeleton reorganization
  • regulation of bone resorption
  • ruffle organization
  • positive regulation of cell migration
  • signal transduction
  • cell-cell junction maintenance
  • negative regulation of apoptotic process
  • cellular response to macrophage colony-stimulating factor stimulus
Components
  • plasma membrane
  • cell surface
  • CSF1-CSF1R complex
  • integral component of plasma membrane
  • intracellular
General FunctionProtein homodimerization activity
Specific FunctionTyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor.
Pfam Domain Function
Transmembrane Regions518-538
GenBank Protein ID553224
UniProtKB IDP07333
UniProtKB Entry NameCSF1R_HUMAN
Cellular LocationCell membrane
Gene sequence
>lcl|BSEQ0010602|Macrophage colony-stimulating factor 1 receptor (CSF1R)
ATGGGCCCAGGAGTTCTGCTGCTCCTGCTGGTGGCCACAGCTTGGCATGGTCAGGGAATC
CCAGTGATAGAGCCCAGTGTCCCTGAGCTGGTCGTGAAGCCAGGAGCAACGGTGACCTTG
CGATGTGTGGGCAATGGCAGCGTGGAATGGGATGGCCCCCCATCACCTCACTGGACCCTG
TACTCTGATGGCTCCAGCAGCATCCTCAGCACCAACAACGCTACCTTCCAAAACACGGGG
ACCTATCGCTGCACTGAGCCTGGAGACCCCCTGGGAGGCAGCGCCGCCATCCACCTCTAT
GTCAAAGACCCTGCCCGGCCCTGGAACGTGCTAGCACAGGAGGTGGTCGTGTTCGAGGAC
CAGGACGCACTACTGCCCTGTCTGCTCACAGACCCGGTGCTGGAAGCAGGCGTCTCGCTG
GTGCGTGTGCGTGGCCGGCCCCTCATGCGCCACACCAACTACTCCTTCTCGCCCTGGCAT
GGCTTCACCATCCACAGGGCCAAGTTCATTCAGAGCCAGGACTATCAATGCAGTGCCCTG
ATGGGTGGCAGGAAGGTGATGTCCATCAGCATCCGGCTGAAAGTGCAGAAAGTCATCCCA
GGGCCCCCAGCCTTGACACTGGTGCCTGCAGAGCTGGTGCGGATTCGAGGGGAGGCTGCC
CAGATCGTGTGCTCAGCCAGCAGCGTTGATGTTAACTTTGATGTCTTCCTCCAACACAAC
AACACCAAGCTCGCAATCCCTCAACAATCTGACTTTCATAATAACCGTTACCAAAAAGTC
CTGACCCTCAACCTCGATCAAGTAGATTTCCAACATGCCGGCAACTACTCCTGCGTGGCC
AGCAACGTGCAGGGCAAGCACTCCACCTCCATGTTCTTCCGGGTGGTAGAGAGTGCCTAC
TTGAACTTGAGCTCTGAGCAGAACCTCATCCAGGAGGTGACCGTGGGGGAGGGGCTCAAC
CTCAAAGTCATGGTGGAGGCCTACCCAGGCCTGCAAGGTTTTAACTGGACCTACCTGGGA
CCCTTTTCTGACCACCAGCCTGAGCCCAAGCTTGCTAATGCTACCACCAAGGACACATAC
AGGCACACCTTCACCCTCTCTCTGCCCCGCCTGAAGCCCTCTGAGGCTGGCCGCTACTCC
TTCCTGGCCAGAAACCCAGGAGGCTGGAGAGCTCTGACGTTTGAGCTCACCCTTCGATAC
CCCCCAGAGGTAAGCGTCATATGGACATTCATCAACGGCTCTGGCACCCTTTTGTGTGCT
GCCTCTGGGTACCCCCAGCCCAACGTGACATGGCTGCAGTGCAGTGGCCACACTGATAGG
TGTGATGAGGCCCAAGTGCTGCAGGTCTGGGATGACCCATACCCTGAGGTCCTGAGCCAG
GAGCCCTTCCACAAGGTGACGGTGCAGAGCCTGCTGACTGTTGAGACCTTAGAGCACAAC
CAAACCTACGAGTGCAGGGCCCACAACAGCGTGGGGAGTGGCTCCTGGGCCTTCATACCC
ATCTCTGCAGGAGCCCACACGCATCCCCCGGATGAGTTCCTCTTCACACCAGTGGTGGTC
GCCTGCATGTCCATCATGGCCTTGCTGCTGCTGCTGCTCCTGCTGCTATTGTACAAGTAT
AAGCAGAAGCCCAAGTACCAGGTCCGCTGGAAGATCATCGAGAGCTATGAGGGCAACAGT
TATACTTTCATCGACCCCACGCAGCTGCCTTACAACGAGAAGTGGGAGTTCCCCCGGAAC
AACCTGCAGTTTGGTAAGACCCTCGGAGCTGGAGCCTTTGGGAAGGTGGTGGAGGCCACG
GCCTTTGGTCTGGGCAAGGAGGATGCTGTCCTGAAGGTGGCTGTGAAGATGCTGAAGTCC
ACGGCCCATGCTGATGAGAAGGAGGCCCTCATGTCCGAGCTGAAGATCATGAGCCACCTG
GGCCAGCACGAGAACATCGTCAACCTTCTGGGAGCCTGTACCCATGGAGGCCCTGTACTG
GTCATCACGGAGTACTGTTGCTATGGCGACCTGCTCAACTTTCTGCGAAGGAAGGCTGAG
GCCATGCTGGGACCCAGCCTGAGCCCCGGCCAGGACCCCGAGGGAGGCGTCGACTATAAG
AACATCCACCTCGAGAAGAAATATGTCCGCAGGGACAGTGGCTTCTCCAGCCAGGGTGTG
GACACCTATGTGGAGATGAGGCCTGTCTCCACTTCTTCAAATGACTCCTTCTCTGAGCAA
GACCTGGACAAGGAGGATGGACGGCCCCTGGAGCTCCGGGACCTGCTTCACTTCTCCAGC
CAAGTAGCCCAGGGCATGGCCTTCCTCGCTTCCAAGAATTGCATCCACCGGGACGTGGCA
GCGCGTAACGTGCTGTTGACCAATGGTCATGTGGCCAAGATTGGGGACTTCGGGCTGGCT
AGGGACATCATGAATGACTCCAACTACATTGTCAAGGGCAATGCCCGCCTGCCTGTGAAG
TGGATGGCCCCAGAGAGCATCTTTGACTGTGTCTACACGGTTCAGAGCGACGTCTGGTCC
TATGGCATCCTCCTCTGGGAGATCTTCTCACTTGGGCTGAATCCCTACCCTGGCATCCTG
GTGAACAGCAAGTTCTATAAACTGGTGAAGGATGGATACCAAATGGCCCAGCCTGCATTT
GCCCCAAAGAATATATACAGCATCATGCAGGCCTGCTGGGCCTTGGAGCCCACCCACAGA
CCCACCTTCCAGCAGATCTGCTCCTTCCTTCAGGAGCAGGCCCAAGAGGACAGGAGAGAG
CGGGACTATACCAATCTGCCGAGCAGCAGCAGAAGCGGTGGCAGCGGCAGCAGCAGCAGT
GAGCTGGAGGAGGAGAGCTCTAGTGAGCACCTGACCTGCTGCGAGCAAGGGGATATCGCC
CAGCCCTTGCTGCAGCCCAACAACTATCAGTTCTGCTGA
GenBank Gene IDM25786
GeneCard IDNot Available
GenAtlas IDCSF1R
HGNC IDHGNC:2433
Chromosome Location5
Locus5q33-q35
References
  1. Hampe A, Shamoon BM, Gobet M, Sherr CJ, Galibert F: Nucleotide sequence and structural organization of the human FMS proto-oncogene. Oncogene Res. 1989;4(1):9-17. 2524025
  2. Coussens L, Van Beveren C, Smith D, Chen E, Mitchell RL, Isacke CM, Verma IM, Ullrich A: Structural alteration of viral homologue of receptor proto-oncogene fms at carboxyl terminus. Nature. 1986 Mar 20-26;320(6059):277-80. 2421165
  3. Andre C, Hampe A, Lachaume P, Martin E, Wang XP, Manus V, Hu WX, Galibert F: Sequence analysis of two genomic regions containing the KIT and the FMS receptor tyrosine kinase genes. Genomics. 1997 Jan 15;39(2):216-26. 9027509
  4. Jin P, Zhang J, Sumariwalla PF, Ni I, Jorgensen B, Crawford D, Phillips S, Feldmann M, Shepard HM, Paleolog EM: Novel splice variants derived from the receptor tyrosine kinase superfamily are potential therapeutics for rheumatoid arthritis. Arthritis Res Ther. 2008;10(4):R73. doi: 10.1186/ar2447. Epub 2008 Jul 1. 18593464
  5. Schmutz J, Martin J, Terry A, Couronne O, Grimwood J, Lowry S, Gordon LA, Scott D, Xie G, Huang W, Hellsten U, Tran-Gyamfi M, She X, Prabhakar S, Aerts A, Altherr M, Bajorek E, Black S, Branscomb E, Caoile C, Challacombe JF, Chan YM, Denys M, Detter JC, Escobar J, Flowers D, Fotopulos D, Glavina T, Gomez M, Gonzales E, Goodstein D, Grigoriev I, Groza M, Hammon N, Hawkins T, Haydu L, Israni S, Jett J, Kadner K, Kimball H, Kobayashi A, Lopez F, Lou Y, Martinez D, Medina C, Morgan J, Nandkeshwar R, Noonan JP, Pitluck S, Pollard M, Predki P, Priest J, Ramirez L, Retterer J, Rodriguez A, Rogers S, Salamov A, Salazar A, Thayer N, Tice H, Tsai M, Ustaszewska A, Vo N, Wheeler J, Wu K, Yang J, Dickson M, Cheng JF, Eichler EE, Olsen A, Pennacchio LA, Rokhsar DS, Richardson P, Lucas SM, Myers RM, Rubin EM: The DNA sequence and comparative analysis of human chromosome 5. Nature. 2004 Sep 16;431(7006):268-74. 15372022
  6. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. 15489334
  7. Visvader J, Verma IM: Differential transcription of exon 1 of the human c-fms gene in placental trophoblasts and monocytes. Mol Cell Biol. 1989 Mar;9(3):1336-41. 2524648
  8. Wheeler EF, Roussel MF, Hampe A, Walker MH, Fried VA, Look AT, Rettenmier CW, Sherr CJ: The amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences. J Virol. 1986 Aug;59(2):224-33. 3525854
  9. Nienhuis AW, Bunn HF, Turner PH, Gopal TV, Nash WG, O'Brien SJ, Sherr CJ: Expression of the human c-fms proto-oncogene in hematopoietic cells and its deletion in the 5q- syndrome. Cell. 1985 Sep;42(2):421-8. 4028159
  10. Browning PJ, Bunn HF, Cline A, Shuman M, Nienhuis AW: "Replacement" of COOH-terminal truncation of v-fms with c-fms sequences markedly reduces transformation potential. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7800-4. 3532121
  11. Bourette RP, Mouchiroud G, Ouazana R, Morle F, Godet J, Blanchet JP: Expression of human colony-stimulating factor-1 (CSF-1) receptor in murine pluripotent hematopoietic NFS-60 cells induces long-term proliferation in response to CSF-1 without loss of erythroid differentiation potential. Blood. 1993 May 15;81(10):2511-20. 7683918
  12. Courtneidge SA, Dhand R, Pilat D, Twamley GM, Waterfield MD, Roussel MF: Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor. EMBO J. 1993 Mar;12(3):943-50. 7681396
  13. Sapi E, Flick MB, Gilmore-Hebert M, Rodov S, Kacinski BM: Transcriptional regulation of the c-fms (CSF-1R) proto-oncogene in human breast carcinoma cells by glucocorticoids. Oncogene. 1995 Feb 2;10(3):529-42. 7845678
  14. Morley GM, Uden M, Gullick WJ, Dibb NJ: Cell specific transformation by c-fms activating loop mutations is attributable to constitutive receptor degradation. Oncogene. 1999 May 20;18(20):3076-84. 10340379
  15. Baran CP, Tridandapani S, Helgason CD, Humphries RK, Krystal G, Marsh CB: The inositol 5'-phosphatase SHIP-1 and the Src kinase Lyn negatively regulate macrophage colony-stimulating factor-induced Akt activity. J Biol Chem. 2003 Oct 3;278(40):38628-36. Epub 2003 Jul 25. 12882960
  16. Wrobel CN, Debnath J, Lin E, Beausoleil S, Roussel MF, Brugge JS: Autocrine CSF-1R activation promotes Src-dependent disruption of mammary epithelial architecture. J Cell Biol. 2004 Apr 26;165(2):263-73. 15117969
  17. Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, Moore RJ, Smith RD: Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res. 2005 Nov-Dec;4(6):2070-80. 16335952
  18. Guo J, Marcotte PA, McCall JO, Dai Y, Pease LJ, Michaelides MR, Davidsen SK, Glaser KB: Inhibition of phosphorylation of the colony-stimulating factor-1 receptor (c-Fms) tyrosine kinase in transfected cells by ABT-869 and other tyrosine kinase inhibitors. Mol Cancer Ther. 2006 Apr;5(4):1007-13. 16648572
  19. Ohno H, Kubo K, Murooka H, Kobayashi Y, Nishitoba T, Shibuya M, Yoneda T, Isoe T: A c-fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast differentiation and osteolytic bone destruction in a bone metastasis model. Mol Cancer Ther. 2006 Nov;5(11):2634-43. 17121910
  20. Taylor JR, Brownlow N, Domin J, Dibb NJ: FMS receptor for M-CSF (CSF-1) is sensitive to the kinase inhibitor imatinib and mutation of Asp-802 to Val confers resistance. Oncogene. 2006 Jan 5;25(1):147-51. 16170366
  21. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT: Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science. 2008 May 9;320(5877):807-11. doi: 10.1126/science.1154370. 18467591
  22. Hiraga T, Nakamura H: Imatinib mesylate suppresses bone metastases of breast cancer by inhibiting osteoclasts through the blockade of c-Fms signals. Int J Cancer. 2009 Jan 1;124(1):215-22. doi: 10.1002/ijc.23903. 18814279
  23. Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS: Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res. 2009 Dec 15;69(24):9498-506. doi: 10.1158/0008-5472.CAN-09-1868. Epub . 19934330
  24. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15. 19369195
  25. Mashkani B, Griffith R, Ashman LK: Colony stimulating factor-1 receptor as a target for small molecule inhibitors. Bioorg Med Chem. 2010 Mar 1;18(5):1789-97. doi: 10.1016/j.bmc.2010.01.056. Epub 2010 Jan 28. 20156689
  26. Chihara T, Suzu S, Hassan R, Chutiwitoonchai N, Hiyoshi M, Motoyoshi K, Kimura F, Okada S: IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ. 2010 Dec;17(12):1917-27. doi: 10.1038/cdd.2010.60. Epub 2010 May 21. 20489731
  27. Eda H, Zhang J, Keith RH, Michener M, Beidler DR, Monahan JB: Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine. 2010 Dec;52(3):215-20. doi: 10.1016/j.cyto.2010.08.005. Epub 2010 Sep 9. 20829061
  28. Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, Williams LT, Lin H, Stanley ER: Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol. 2010 Sep;88(3):495-505. doi: 10.1189/jlb.1209822. Epub 2010 May 26. 20504948
  29. Pixley FJ, Stanley ER: CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004 Nov;14(11):628-38. 15519852
  30. Chitu V, Stanley ER: Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006 Feb;18(1):39-48. Epub 2005 Dec 6. 16337366
  31. Douglass TG, Driggers L, Zhang JG, Hoa N, Delgado C, Williams CC, Dan Q, Sanchez R, Jeffes EW, Wepsic HT, Myers MP, Koths K, Jadus MR: Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies. Int Immunopharmacol. 2008 Oct;8(10):1354-76. doi: 10.1016/j.intimp.2008.04.016. Epub 2008 Jun 2. 18687298
  32. Auffray C, Sieweke MH, Geissmann F: Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669-92. doi: 10.1146/annurev.immunol.021908.132557. 19132917
  33. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. 24275569
  34. Schubert C, Schalk-Hihi C, Struble GT, Ma HC, Petrounia IP, Brandt B, Deckman IC, Patch RJ, Player MR, Spurlino JC, Springer BA: Crystal structure of the tyrosine kinase domain of colony-stimulating factor-1 receptor (cFMS) in complex with two inhibitors. J Biol Chem. 2007 Feb 9;282(6):4094-101. Epub 2006 Nov 28. 17132624
  35. Walter M, Lucet IS, Patel O, Broughton SE, Bamert R, Williams NK, Fantino E, Wilks AF, Rossjohn J: The 2.7 A crystal structure of the autoinhibited human c-Fms kinase domain. J Mol Biol. 2007 Mar 30;367(3):839-47. Epub 2007 Jan 20. 17292918
  36. Huang H, Hutta DA, Hu H, DesJarlais RL, Schubert C, Petrounia IP, Chaikin MA, Manthey CL, Player MR: Design and synthesis of a pyrido[2,3-d]pyrimidin-5-one class of anti-inflammatory FMS inhibitors. Bioorg Med Chem Lett. 2008 Apr 1;18(7):2355-61. doi: 10.1016/j.bmcl.2008.02.070. Epub 2008 Mar 4. 18342505
  37. Huang H, Hutta DA, Rinker JM, Hu H, Parsons WH, Schubert C, DesJarlais RL, Crysler CS, Chaikin MA, Donatelli RR, Chen Y, Cheng D, Zhou Z, Yurkow E, Manthey CL, Player MR: Pyrido[2,3-d]pyrimidin-5-ones: a novel class of antiinflammatory macrophage colony-stimulating factor-1 receptor inhibitors. J Med Chem. 2009 Feb 26;52(4):1081-99. doi: 10.1021/jm801406h. 19193011
  38. Meyers MJ, Pelc M, Kamtekar S, Day J, Poda GI, Hall MK, Michener ML, Reitz BA, Mathis KJ, Pierce BS, Parikh MD, Mischke DA, Long SA, Parlow JJ, Anderson DR, Thorarensen A: Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode. Bioorg Med Chem Lett. 2010 Mar 1;20(5):1543-7. doi: 10.1016/j.bmcl.2010.01.078. Epub 2010 Jan 21. 20137931
  39. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR: Patterns of somatic mutation in human cancer genomes. Nature. 2007 Mar 8;446(7132):153-8. 17344846
  40. Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, Lash J, Wider C, Wojtas A, DeJesus-Hernandez M, Adamson J, Kouri N, Sundal C, Shuster EA, Aasly J, MacKenzie J, Roeber S, Kretzschmar HA, Boeve BF, Knopman DS, Petersen RC, Cairns NJ, Ghetti B, Spina S, Garbern J, Tselis AC, Uitti R, Das P, Van Gerpen JA, Meschia JF, Levy S, Broderick DF, Graff-Radford N, Ross OA, Miller BB, Swerdlow RH, Dickson DW, Wszolek ZK: Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet. 2011 Dec 25;44(2):200-5. doi: 10.1038/ng.1027. 22197934
  41. Battisti C, Di Donato I, Bianchi S, Monti L, Formichi P, Rufa A, Taglia I, Cerase A, Dotti MT, Federico A: Hereditary diffuse leukoencephalopathy with axonal spheroids: three patients with stroke-like presentation carrying new mutations in the CSF1R gene. J Neurol. 2014 Apr;261(4):768-72. doi: 10.1007/s00415-014-7257-3. Epub 2014 Feb 16. 24532199