You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
NameNAD-dependent protein deacetylase sirtuin-1
Synonyms
  • 3.5.1.-
  • hSIR2
  • hSIRT1
  • Regulatory protein SIR2 homolog 1
  • SIR2-like protein 1
  • SIR2L1
Gene NameSIRT1
OrganismHuman
Amino acid sequence
>lcl|BSEQ0004833|NAD-dependent protein deacetylase sirtuin-1
MADEAALALQPGGSPSAAGADREAASSPAGEPLRKRPRRDGPGLERSPGEPGGAAPEREV
PAAARGCPGAAAAALWREAEAEAAAAGGEQEAQATAAAGEGDNGPGLQGPSREPPLADNL
YDEDDDDEGEEEEEAAAAAIGYRDNLLFGDEIITNGFHSCESDEEDRASHASSSDWTPRP
RIGPYTFVQQHLMIGTDPRTILKDLLPETIPPPELDDMTLWQIVINILSEPPKRKKRKDI
NTIEDAVKLLQECKKIIVLTGAGVSVSCGIPDFRSRDGIYARLAVDFPDLPDPQAMFDIE
YFRKDPRPFFKFAKEIYPGQFQPSLCHKFIALSDKEGKLLRNYTQNIDTLEQVAGIQRII
QCHGSFATASCLICKYKVDCEAVRGDIFNQVVPRCPRCPADEPLAIMKPEIVFFGENLPE
QFHRAMKYDKDEVDLLIVIGSSLKVRPVALIPSSIPHEVPQILINREPLPHLHFDVELLG
DCDVIINELCHRLGGEYAKLCCNPVKLSEITEKPPRTQKELAYLSELPPTPLHVSEDSSS
PERTSPPDSSVIVTLLDQAAKSNDDLDVSESKGCMEEKPQEVQTSRNVESIAEQMENPDL
KNVGSSTGEKNERTSVAGTVRKCWPNRVAKEQISRRLDGNQYLFLPPNRYIFHGAEVYSD
SEDDVLSSSSCGSNSDSGTCQSPSLEEPMEDESEIEEFYNGLEDEPDVPERAGGAGFGTD
GDDQEAINEAISVKQEVTDMNYPSNKS
Number of residues747
Molecular Weight81680.06
Theoretical pI4.29
GO Classification
Functions
  • mitogen-activated protein kinase binding
  • protein C-terminus binding
  • deacetylase activity
  • NAD-dependent histone deacetylase activity (H3-K9 specific)
  • protein deacetylase activity
  • transcription factor binding
  • NAD-dependent histone deacetylase activity
  • nuclear hormone receptor binding
  • NAD-dependent protein deacetylase activity
  • metal ion binding
  • identical protein binding
  • histone deacetylase activity
  • core promoter sequence-specific DNA binding
  • enzyme binding
  • p53 binding
  • NAD+ binding
  • bHLH transcription factor binding
  • transcription corepressor activity
  • histone binding
  • keratin filament binding
  • HLH domain binding
Processes
  • single strand break repair
  • cholesterol homeostasis
  • regulation of gene expression, epigenetic
  • negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway
  • establishment of chromatin silencing
  • negative regulation of cell growth
  • positive regulation of DNA repair
  • regulation of mitotic cell cycle
  • maintenance of chromatin silencing
  • positive regulation of cholesterol efflux
  • cellular response to heat
  • chromatin silencing at rDNA
  • negative regulation of cellular response to testosterone stimulus
  • viral process
  • regulation of bile acid biosynthetic process
  • negative regulation of peptidyl-lysine acetylation
  • DNA replication
  • response to insulin
  • regulation of cellular response to heat
  • negative regulation of histone H3-K14 acetylation
  • ovulation from ovarian follicle
  • negative regulation of protein kinase B signaling
  • white fat cell differentiation
  • DNA repair
  • positive regulation of MHC class II biosynthetic process
  • negative regulation of NF-kappaB transcription factor activity
  • negative regulation of histone H4-K16 acetylation
  • cellular response to DNA damage stimulus
  • muscle organ development
  • response to oxidative stress
  • positive regulation of insulin receptor signaling pathway
  • negative regulation of fat cell differentiation
  • negative regulation of prostaglandin biosynthetic process
  • positive regulation of apoptotic process
  • regulation of glucose metabolic process
  • proteasome-mediated ubiquitin-dependent protein catabolic process
  • negative regulation of phosphorylation
  • cellular response to hypoxia
  • positive regulation of adaptive immune response
  • positive regulation of protein phosphorylation
  • histone H3 deacetylation
  • negative regulation of cellular senescence
  • protein ubiquitination
  • transcription, DNA-templated
  • positive regulation of cellular senescence
  • regulation of cell proliferation
  • positive regulation of cysteine-type endopeptidase activity involved in apoptotic process
  • negative regulation of androgen receptor signaling pathway
  • regulation of protein import into nucleus, translocation
  • negative regulation of gene expression
  • negative regulation of neuron death
  • peptidyl-lysine deacetylation
  • positive regulation of chromatin silencing
  • cellular response to tumor necrosis factor
  • fatty acid homeostasis
  • protein deacetylation
  • positive regulation of cAMP-dependent protein kinase activity
  • cellular response to hydrogen peroxide
  • positive regulation of macrophage apoptotic process
  • response to hydrogen peroxide
  • cellular response to starvation
  • UV-damage excision repair
  • stress-induced premature senescence
  • histone deacetylation
  • positive regulation of endothelial cell proliferation
  • negative regulation of protein acetylation
  • cellular triglyceride homeostasis
  • pyrimidine dimer repair by nucleotide-excision repair
  • negative regulation of apoptotic process
  • negative regulation of TOR signaling
  • negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator
  • positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway
  • regulation of peroxisome proliferator activated receptor signaling pathway
  • regulation of endodeoxyribonuclease activity
  • regulation of protein serine/threonine kinase activity
  • positive regulation of transcription from RNA polymerase II promoter
  • negative regulation of I-kappaB kinase/NF-kappaB signaling
  • positive regulation of histone H3-K9 methylation
  • triglyceride mobilization
  • chromatin silencing
  • negative regulation of DNA damage response, signal transduction by p53 class mediator
  • cell aging
  • regulation of smooth muscle cell apoptotic process
  • positive regulation of cell proliferation
  • cellular glucose homeostasis
  • DNA synthesis involved in DNA repair
  • peptidyl-lysine acetylation
  • protein destabilization
  • circadian regulation of gene expression
  • negative regulation of cAMP-dependent protein kinase activity
  • negative regulation of helicase activity
  • rRNA processing
  • spermatogenesis
  • positive regulation of macroautophagy
  • intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator
  • negative regulation of transcription from RNA polymerase II promoter
  • gene expression
  • negative regulation of sequence-specific DNA binding transcription factor activity
  • chromatin organization
  • methylation-dependent chromatin silencing
  • angiogenesis
  • negative regulation of gene expression, epigenetic
  • negative regulation of transforming growth factor beta receptor signaling pathway
  • behavioral response to starvation
  • negative regulation of transcription, DNA-templated
  • cellular response to ionizing radiation
Components
  • mitochondrion
  • nucleoplasm
  • nucleus
  • nuclear heterochromatin
  • nuclear envelope
  • nuclear inner membrane
  • nuclear euchromatin
  • PML body
  • rDNA heterochromatin
  • nuclear chromatin
  • chromatin silencing complex
  • cytoplasm
  • nucleolus
General FunctionTranscription factor binding
Specific FunctionNAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metobolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively. Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction. Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. Deacetylates 'Lys-266' of SUV39H1, leading to its activation. Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1. Deacetylates H2A and 'Lys-26' of HIST1H1E. Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression. Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting. Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1. Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2. This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response. Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence. Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I. Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability. Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation. Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis. Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing. Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha. Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1. Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver. Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation. Involved in HES1- and HEY2-mediated transcriptional repression. In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62'. Deacetylates MEF2D. Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3. Represses HNF1A-mediated transcription. Required for the repression of ESRRG by CREBZF. Modulates AP-1 transcription factor activity. Deacetylates NR1H3 AND NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteosomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed. Involved in lipid metabolism. Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2. Deacetylates ACSS2 leading to its activation, and HMGCS1. Involved in liver and muscle metabolism. Through deacteylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletel muscle under low-glucose conditions and is involved in glucose homeostasis. Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression. Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and faciliting recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2. Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN. Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage. Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1. Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8. Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation. Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear. In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability. Deacteylates MECOM/EVI1. Isoform 2 is shown to deacetylate 'Lys-382' of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory loop. In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection. Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization. During the neurogenic transition, repress selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation. Regulates the circadian expression of several core clock genes, including ARNTL/BMAL1, RORC, PER2 and CRY1 and plays a critical role in maintaining a controlled rhythmicity in histone acetylation, thereby contributing to circadian chromatin remodeling. Deacetylates ARNTL/BMAL1 and histones at the circadian gene promoters in order to facilitate repression by inhibitory components of the circadian oscillator. Deacetylates PER2, facilitating its ubiquitination and degradation by the proteosome. Protects cardiomyocytes against palmitate-induced apoptosis (PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222, PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825, PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051, PubMed:16998810, PubMed:17283066, PubMed:17334224, PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707, PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677, PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166, PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304, PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729, PubMed:20975832, PubMed:21149730, PubMed:21245319, PubMed:21471201, PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047, PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893, PubMed:21909281, PubMed:21947282, PubMed:22274616). Deacetylates XBP1 isoform 2; deacetylation decreases protein stability of XBP1 isoform 2 and inhibits its transcriptional activity (PubMed:20955178). Involved in the CCAR2-mediated regulation of PCK1 and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at 'Lys-49' (PubMed:24824780).SirtT1 75 kDa fragment: catalytically inactive 75SirT1 may be involved in regulation of apoptosis. May be involved in protecting chondrocytes from apoptotic death by associating with cytochrome C and interfering with apoptosome assembly.
Pfam Domain Function
Transmembrane RegionsNot Available
GenBank Protein IDNot Available
UniProtKB IDQ96EB6
UniProtKB Entry NameSIR1_HUMAN
Cellular LocationNucleus
Gene sequence
>lcl|BSEQ0021930|NAD-dependent protein deacetylase sirtuin-1 (SIRT1)
ATGTTTGATATTGAATATTTCAGAAAAGATCCAAGACCATTCTTCAAGTTTGCAAAGGAA
ATATATCCTGGACAATTCCAGCCATCTCTCTGTCACAAATTCATAGCCTTGTCAGATAAG
GAAGGAAAACTACTTCGCAACTATACCCAGAACATAGACACGCTGGAACAGGTTGCGGGA
ATCCAAAGGATAATTCAGTGTCATGGTTCCTTTGCAACAGCATCTTGCCTGATTTGTAAA
TACAAAGTTGACTGTGAAGCTGTACGAGGAGATATTTTTAATCAGGTAGTTCCTCGATGT
CCTAGGTGCCCAGCTGATGAACCGCTTGCTATCATGAAACCAGAGATTGTGTTTTTTGGT
GAAAATTTACCAGAACAGTTTCATAGAGCCATGAAGTATGACAAAGATGAAGTTGACCTC
CTCATTGTTATTGGGTCTTCCCTCAAAGTAAGACCAGTAGCACTAATTCCAAGTTCCATA
CCCCATGAAGTGCCTCAGATATTAATTAATAGAGAACCTTTGCCTCATCTGCATTTTGAT
GTAGAGCTTCTTGGAGACTGTGATGTCATAATTAATGAATTGTGTCATAGGTTAGGTGGT
GAATATGCCAAACTTTGCTGTAACCCTGTAAAGCTTTCAGAAATTACTGAAAAACCTCCA
CGAACACAAAAAGAATTGGCTTATTTGTCAGAGTTGCCACCCACACCTCTTCATGTTTCA
GAAGACTCAAGTTCACCAGAAAGAACTTCACCACCAGATTCTTCAGTGATTGTCACACTT
TTAGACCAAGCAGCTAAGAGTAATGATGATTTAGATGTGTCTGAATCAAAAGGTTGTATG
GAAGAAAAACCACAGGAAGTACAAACTTCTAGGAATGTTGAAAGTATTGCTGAACAGATG
GAAAATCCGGATTTGAAGAATGTTGGTTCTAGTACTGGGGAGAAAAATGAAAGAACTTCA
GTGGCTGGAACAGTGAGAAAATGCTGGCCTAATAGAGTGGCAAAGGAGCAGATTAGTAGG
CGGCTTGATGGTAATCAGTATCTGTTTTTGCCACCAAATCGTTACATTTTCCATGGCGCT
GAGGTATATTCAGACTCTGAAGATGACGTCTTATCCTCTAGTTCTTGTGGCAGTAACAGT
GATAGTGGGACATGCCAGAGTCCAAGTTTAGAAGAACCCATGGAGGATGAAAGTGAAATT
GAAGAATTCTACAATGGCTTAGAAGATGAGCCTGATGTTCCAGAGAGAGCTGGAGGAGCT
GGATTTGGGACTGATGGAGATGATCAAGAGGCAATTAATGAAGCTATATCTGTGAAACAG
GAAGTAACAGACATGAACTATCCATCAAACAAATCATAG
GenBank Gene IDAF083106
GeneCard IDNot Available
GenAtlas IDSIRT1
HGNC IDHGNC:14929
Chromosome Location10
Locus10q21.3
References
  1. Frye RA: Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 1999 Jun 24;260(1):273-9. 10381378
  2. Takata T, Ishikawa F: Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun. 2003 Jan 31;301(1):250-7. 12535671
  3. Deloukas P, Earthrowl ME, Grafham DV, Rubenfield M, French L, Steward CA, Sims SK, Jones MC, Searle S, Scott C, Howe K, Hunt SE, Andrews TD, Gilbert JG, Swarbreck D, Ashurst JL, Taylor A, Battles J, Bird CP, Ainscough R, Almeida JP, Ashwell RI, Ambrose KD, Babbage AK, Bagguley CL, Bailey J, Banerjee R, Bates K, Beasley H, Bray-Allen S, Brown AJ, Brown JY, Burford DC, Burrill W, Burton J, Cahill P, Camire D, Carter NP, Chapman JC, Clark SY, Clarke G, Clee CM, Clegg S, Corby N, Coulson A, Dhami P, Dutta I, Dunn M, Faulkner L, Frankish A, Frankland JA, Garner P, Garnett J, Gribble S, Griffiths C, Grocock R, Gustafson E, Hammond S, Harley JL, Hart E, Heath PD, Ho TP, Hopkins B, Horne J, Howden PJ, Huckle E, Hynds C, Johnson C, Johnson D, Kana A, Kay M, Kimberley AM, Kershaw JK, Kokkinaki M, Laird GK, Lawlor S, Lee HM, Leongamornlert DA, Laird G, Lloyd C, Lloyd DM, Loveland J, Lovell J, McLaren S, McLay KE, McMurray A, Mashreghi-Mohammadi M, Matthews L, Milne S, Nickerson T, Nguyen M, Overton-Larty E, Palmer SA, Pearce AV, Peck AI, Pelan S, Phillimore B, Porter K, Rice CM, Rogosin A, Ross MT, Sarafidou T, Sehra HK, Shownkeen R, Skuce CD, Smith M, Standring L, Sycamore N, Tester J, Thorpe A, Torcasso W, Tracey A, Tromans A, Tsolas J, Wall M, Walsh J, Wang H, Weinstock K, West AP, Willey DL, Whitehead SL, Wilming L, Wray PW, Young L, Chen Y, Lovering RC, Moschonas NK, Siebert R, Fechtel K, Bentley D, Durbin R, Hubbard T, Doucette-Stamm L, Beck S, Smith DR, Rogers J: The DNA sequence and comparative analysis of human chromosome 10. Nature. 2004 May 27;429(6990):375-81. 15164054
  4. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. 15489334
  5. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA: hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001 Oct 19;107(2):149-59. 11672523
  6. Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T: Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002 May 15;21(10):2383-96. 12006491
  7. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem. 2002 Nov 22;277(47):45099-107. Epub 2002 Sep 23. 12297502
  8. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA: Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003 Sep 11;425(6954):191-6. Epub 2003 Aug 24. 12939617
  9. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW: Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004 Jun 16;23(12):2369-80. Epub 2004 May 20. 15152190
  10. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L: Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004 Feb 20;116(4):551-63. 14980222
  11. van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM: FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem. 2004 Jul 9;279(28):28873-9. Epub 2004 May 4. 15126506
  12. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 2004 Oct 8;16(1):93-105. 15469825
  13. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004 Mar 26;303(5666):2011-5. Epub 2004 Feb 19. 14976264
  14. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004 Jul 16;305(5682):390-2. Epub 2004 Jun 17. 15205477
  15. Yang Y, Hou H, Haller EM, Nicosia SV, Bai W: Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 2005 Mar 9;24(5):1021-32. Epub 2005 Feb 3. 15692560
  16. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005 Oct;16(10):4623-35. Epub 2005 Aug 3. 16079181
  17. Zhao X, Sternsdorf T, Bolger TA, Evans RM, Yao TP: Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol. 2005 Oct;25(19):8456-64. 16166628
  18. Pagans S, Pedal A, North BJ, Kaehlcke K, Marshall BL, Dorr A, Hetzer-Egger C, Henklein P, Frye R, McBurney MW, Hruby H, Jung M, Verdin E, Ott M: SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 2005 Feb;3(2):e41. Epub 2005 Feb 8. 15719057
  19. Kuzmichev A, Margueron R, Vaquero A, Preissner TS, Scher M, Kirmizis A, Ouyang X, Brockdorff N, Abate-Shen C, Farnham P, Reinberg D: Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1859-64. Epub 2005 Jan 31. 15684044
  20. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP: A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol. 2006 Oct;24(10):1285-92. Epub 2006 Sep 10. 16964243
  21. Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, Nemoto S, Finkel T, Gu W, Cress WD, Chen J: Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol. 2006 Sep;8(9):1025-31. Epub 2006 Aug 6. 16892051
  22. Wong S, Weber JD: Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J. 2007 Nov 1;407(3):451-60. 17620057
  23. Ghosh HS, Spencer JV, Ng B, McBurney MW, Robbins PD: Sirt1 interacts with transducin-like enhancer of split-1 to inhibit nuclear factor kappaB-mediated transcription. Biochem J. 2007 Nov 15;408(1):105-11. 17680780
  24. Pedersen TA, Bereshchenko O, Garcia-Silva S, Ermakova O, Kurz E, Mandrup S, Porse BT, Nerlov C: Distinct C/EBPalpha motifs regulate lipogenic and gluconeogenic gene expression in vivo. EMBO J. 2007 Feb 21;26(4):1081-93. Epub 2007 Feb 8. 17290224
  25. Jeong J, Juhn K, Lee H, Kim SH, Min BH, Lee KM, Cho MH, Park GH, Lee KH: SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med. 2007 Feb 28;39(1):8-13. 17334224
  26. Dai JM, Wang ZY, Sun DC, Lin RX, Wang SQ: SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol. 2007 Jan;210(1):161-6. 16998810
  27. Dai Y, Ngo D, Forman LW, Qin DC, Jacob J, Faller DV: Sirtuin 1 is required for antagonist-induced transcriptional repression of androgen-responsive genes by the androgen receptor. Mol Endocrinol. 2007 Aug;21(8):1807-21. Epub 2007 May 15. 17505061
  28. Kim EJ, Kho JH, Kang MR, Um SJ: Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell. 2007 Oct 26;28(2):277-90. 17964266
  29. Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L: SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007 Oct 12;28(1):91-106. 17936707
  30. Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E: SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell. 2007 Jul 6;27(1):149-62. 17612497
  31. Stankovic-Valentin N, Deltour S, Seeler J, Pinte S, Vergoten G, Guerardel C, Dejean A, Leprince D: An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol Cell Biol. 2007 Apr;27(7):2661-75. Epub 2007 Feb 5. 17283066
  32. Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D: SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 2007 Nov 15;450(7168):440-4. 18004385
  33. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U: SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008 Jul 25;134(2):317-28. doi: 10.1016/j.cell.2008.06.050. 18662546
  34. Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, Oie S, Daitoku H, Okuwaki M, Nagata K, Fukamizu A, Kimura K, Shimizu T, Yanagisawa J: Epigenetic control of rDNA loci in response to intracellular energy status. Cell. 2008 May 16;133(4):627-39. doi: 10.1016/j.cell.2008.03.030. 18485871
  35. Ford J, Ahmed S, Allison S, Jiang M, Milner J: JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle. 2008 Oct;7(19):3091-7. Epub 2008 Oct 15. 18838864
  36. Kwon HS, Brent MM, Getachew R, Jayakumar P, Chen LF, Schnolzer M, McBurney MW, Marmorstein R, Greene WC, Ott M: Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Cell Host Microbe. 2008 Mar 13;3(3):158-67. doi: 10.1016/j.chom.2008.02.002. 18329615
  37. Li K, Casta A, Wang R, Lozada E, Fan W, Kane S, Ge Q, Gu W, Orren D, Luo J: Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem. 2008 Mar 21;283(12):7590-8. doi: 10.1074/jbc.M709707200. Epub 2008 Jan 17. 18203716
  38. Lan F, Cacicedo JM, Ruderman N, Ido Y: SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008 Oct 10;283(41):27628-35. doi: 10.1074/jbc.M805711200. Epub 2008 Aug 7. 18687677
  39. Kim JE, Chen J, Lou Z: DBC1 is a negative regulator of SIRT1. Nature. 2008 Jan 31;451(7178):583-6. doi: 10.1038/nature06500. 18235501
  40. Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, Gu W: Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008 Jan 31;451(7178):587-90. doi: 10.1038/nature06515. 18235502
  41. Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, Minor W, Scrable H: Phosphorylation regulates SIRT1 function. PLoS One. 2008;3(12):e4020. doi: 10.1371/journal.pone.0004020. Epub 2008 Dec 24. 19107194
  42. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. 18669648
  43. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T: A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3374-9. doi: 10.1073/pnas.0712145105. Epub 2008 Feb 22. 18296641
  44. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309. 19413330
  45. Zschoernig B, Mahlknecht U: Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Biochem Biophys Res Commun. 2009 Apr 10;381(3):372-7. doi: 10.1016/j.bbrc.2009.02.085. Epub 2009 Feb 21. 19236849
  46. Du J, Jiang H, Lin H: Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD. Biochemistry. 2009 Apr 7;48(13):2878-90. doi: 10.1021/bi802093g. 19220062
  47. Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X: Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009 Apr;9(4):327-38. doi: 10.1016/j.cmet.2009.02.006. 19356714
  48. Xie YB, Park JH, Kim DK, Hwang JH, Oh S, Park SB, Shong M, Lee IK, Choi HS: Transcriptional corepressor SMILE recruits SIRT1 to inhibit nuclear receptor estrogen receptor-related receptor gamma transactivation. J Biol Chem. 2009 Oct 16;284(42):28762-74. doi: 10.1074/jbc.M109.034165. Epub 2009 Aug 18. 19690166
  49. Yuan J, Minter-Dykhouse K, Lou Z: A c-Myc-SIRT1 feedback loop regulates cell growth and transformation. J Cell Biol. 2009 Apr 20;185(2):203-11. doi: 10.1083/jcb.200809167. Epub 2009 Apr 13. 19364925
  50. Pediconi N, Guerrieri F, Vossio S, Bruno T, Belloni L, Schinzari V, Scisciani C, Fanciulli M, Levrero M: hSirT1-dependent regulation of the PCAF-E2F1-p73 apoptotic pathway in response to DNA damage. Mol Cell Biol. 2009 Apr;29(8):1989-98. doi: 10.1128/MCB.00552-08. Epub 2009 Feb 2. 19188449
  51. Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ, de Cabo R, Bordone L: JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One. 2009 Dec 22;4(12):e8414. doi: 10.1371/journal.pone.0008414. 20027304
  52. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. 19690332
  53. Zu Y, Liu L, Lee MY, Xu C, Liang Y, Man RY, Vanhoutte PM, Wang Y: SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res. 2010 Apr 30;106(8):1384-93. doi: 10.1161/CIRCRESAHA.109.215483. Epub 2010 Mar 4. 20203304
  54. Uhl M, Csernok A, Aydin S, Kreienberg R, Wiesmuller L, Gatz SA: Role of SIRT1 in homologous recombination. DNA Repair (Amst). 2010 Apr 4;9(4):383-93. doi: 10.1016/j.dnarep.2009.12.020. Epub 2010 Jan 25. 20097625
  55. Zhang R, Chen HZ, Liu JJ, Jia YY, Zhang ZQ, Yang RF, Zhang Y, Xu J, Wei YS, Liu DP, Liang CC: SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages. J Biol Chem. 2010 Mar 5;285(10):7097-110. doi: 10.1074/jbc.M109.038604. Epub 2009 Dec 30. 20042607
  56. Wang J, Chen J: SIRT1 regulates autoacetylation and histone acetyltransferase activity of TIP60. J Biol Chem. 2010 Apr 9;285(15):11458-64. doi: 10.1074/jbc.M109.087585. Epub 2010 Jan 25. 20100829
  57. Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, Wu SY, Chiang CM, Veenstra TD, Kemper JK: SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010 Oct 29;285(44):33959-70. doi: 10.1074/jbc.M110.122978. Epub 2010 Sep 3. 20817729
  58. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW: Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010 Jun 25;38(6):864-78. doi: 10.1016/j.molcel.2010.05.023. 20620956
  59. Fan W, Luo J: SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell. 2010 Jul 30;39(2):247-58. doi: 10.1016/j.molcel.2010.07.006. 20670893
  60. Yamamori T, DeRicco J, Naqvi A, Hoffman TA, Mattagajasingh I, Kasuno K, Jung SB, Kim CS, Irani K: SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res. 2010 Jan;38(3):832-45. doi: 10.1093/nar/gkp1039. Epub 2009 Nov 24. 19934257
  61. Chanda D, Xie YB, Choi HS: Transcriptional corepressor SHP recruits SIRT1 histone deacetylase to inhibit LRH-1 transactivation. Nucleic Acids Res. 2010 Aug;38(14):4607-19. doi: 10.1093/nar/gkq227. Epub 2010 Apr 7. 20375098
  62. Ghosh HS, McBurney M, Robbins PD: SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 2010 Feb 15;5(2):e9199. doi: 10.1371/journal.pone.0009199. 20169165
  63. Lynch CJ, Shah ZH, Allison SJ, Ahmed SU, Ford J, Warnock LJ, Li H, Serrano M, Milner J: SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53. PLoS One. 2010 Oct 21;5(10):e13502. doi: 10.1371/journal.pone.0013502. 20975832
  64. Ming M, Shea CR, Guo X, Li X, Soltani K, Han W, He YY: Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22623-8. doi: 10.1073/pnas.1010377108. Epub 2010 Dec 13. 21149730
  65. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. 20068231
  66. Hirschey MD, Shimazu T, Capra JA, Pollard KS, Verdin E: SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. Aging (Albany NY). 2011 Jun;3(6):635-42. 21701047
  67. Dvir-Ginzberg M, Gagarina V, Lee EJ, Booth R, Gabay O, Hall DJ: Tumor necrosis factor alpha-mediated cleavage and inactivation of SirT1 in human osteoarthritic chondrocytes. Arthritis Rheum. 2011 Aug;63(8):2363-73. doi: 10.1002/art.30279. 21305533
  68. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. 21269460
  69. Wang FM, Chen YJ, Ouyang HJ: Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem J. 2011 Jan 1;433(1):245-52. doi: 10.1042/BJ20101293. 20955178
  70. Pradhan AK, Kuila N, Singh S, Chakraborty S: EVI1 up-regulates the stress responsive gene SIRT1 which triggers deacetylation and degradation of EVI1. Biochim Biophys Acta. 2011 Apr-Jun;1809(4-6):269-75. doi: 10.1016/j.bbagrm.2011.04.007. Epub 2011 Apr 30. 21555002
  71. Buler M, Aatsinki SM, Skoumal R, Hakkola J: Energy sensing factors PGC-1alpha and SIRT1 modulate PXR expression and function. Biochem Pharmacol. 2011 Dec 15;82(12):2008-15. doi: 10.1016/j.bcp.2011.09.006. Epub 2011 Sep 16. 21933665
  72. Mao B, Zhao G, Lv X, Chen HZ, Xue Z, Yang B, Liu DP, Liang CC: Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int J Biochem Cell Biol. 2011 Nov;43(11):1573-81. doi: 10.1016/j.biocel.2011.07.006. Epub 2011 Jul 22. 21807113
  73. Yuan F, Xie Q, Wu J, Bai Y, Mao B, Dong Y, Bi W, Ji G, Tao W, Wang Y, Yuan Z: MST1 promotes apoptosis through regulating Sirt1-dependent p53 deacetylation. J Biol Chem. 2011 Mar 4;286(9):6940-5. doi: 10.1074/jbc.M110.182543. Epub 2011 Jan 6. 21212262
  74. Back JH, Rezvani HR, Zhu Y, Guyonnet-Duperat V, Athar M, Ratner D, Kim AL: Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent Inhibition of sirtuin 1. J Biol Chem. 2011 May 27;286(21):19100-8. doi: 10.1074/jbc.M111.240598. Epub 2011 Apr 6. 21471201
  75. Bosch-Presegue L, Raurell-Vila H, Marazuela-Duque A, Kane-Goldsmith N, Valle A, Oliver J, Serrano L, Vaquero A: Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol Cell. 2011 Apr 22;42(2):210-23. doi: 10.1016/j.molcel.2011.02.034. 21504832
  76. Peng L, Yuan Z, Ling H, Fukasawa K, Robertson K, Olashaw N, Koomen J, Chen J, Lane WS, Seto E: SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol. 2011 Dec;31(23):4720-34. doi: 10.1128/MCB.06147-11. Epub 2011 Sep 26. 21947282
  77. Marshall GM, Liu PY, Gherardi S, Scarlett CJ, Bedalov A, Xu N, Iraci N, Valli E, Ling D, Thomas W, van Bekkum M, Sekyere E, Jankowski K, Trahair T, Mackenzie KL, Haber M, Norris MD, Biankin AV, Perini G, Liu T: SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet. 2011 Jun;7(6):e1002135. doi: 10.1371/journal.pgen.1002135. Epub 2011 Jun 16. 21698133
  78. Rizki G, Iwata TN, Li J, Riedel CG, Picard CL, Jan M, Murphy CT, Lee SS: The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet. 2011 Sep;7(9):e1002235. doi: 10.1371/journal.pgen.1002235. Epub 2011 Sep 1. 21909281
  79. Liu X, Wang D, Zhao Y, Tu B, Zheng Z, Wang L, Wang H, Gu W, Roeder RG, Zhu WG: Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1925-30. doi: 10.1073/pnas.1019619108. Epub 2011 Jan 18. 21245319
  80. Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta M, Gupta MP: The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 2011 Jul 19;4(182):ra46. doi: 10.1126/scisignal.2001465. 21775285
  81. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570. 21406692
  82. Oppenheimer H, Gabay O, Meir H, Haze A, Kandel L, Liebergall M, Gagarina V, Lee EJ, Dvir-Ginzberg M: 75-kd sirtuin 1 blocks tumor necrosis factor alpha-mediated apoptosis in human osteoarthritic chondrocytes. Arthritis Rheum. 2012 Mar;64(3):718-28. doi: 10.1002/art.33407. 21987377
  83. Wu X, Kong X, Chen D, Li H, Zhao Y, Xia M, Fang M, Li P, Fang F, Sun L, Tian W, Xu H, Yang Y, Qi X, Gao Y, Sha J, Chen Q, Xu Y: SIRT1 links CIITA deacetylation to MHC II activation. Nucleic Acids Res. 2011 Dec;39(22):9549-58. doi: 10.1093/nar/gkr651. Epub 2011 Sep 2. 21890893
  84. Miki T, Xu Z, Chen-Goodspeed M, Liu M, Van Oort-Jansen A, Rea MA, Zhao Z, Lee CC, Chang KS: PML regulates PER2 nuclear localization and circadian function. EMBO J. 2012 Mar 21;31(6):1427-39. doi: 10.1038/emboj.2012.1. Epub 2012 Jan 24. 22274616
  85. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol Cell Proteomics. 2012 Jun;11(6):M111.015131. doi: 10.1074/mcp.M111.015131. Epub 2012 Jan 5. 22223895
  86. Wang F, Chan CH, Chen K, Guan X, Lin HK, Tong Q: Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene. 2012 Mar 22;31(12):1546-57. doi: 10.1038/onc.2011.347. Epub 2011 Aug 15. 21841822
  87. Van Damme P, Lasa M, Polevoda B, Gazquez C, Elosegui-Artola A, Kim DS, De Juan-Pardo E, Demeyer K, Hole K, Larrea E, Timmerman E, Prieto J, Arnesen T, Sherman F, Gevaert K, Aldabe R: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54. doi: 10.1073/pnas.1210303109. Epub 2012 Jul 18. 22814378
  88. Kim W, Kim JE: Deleted in breast cancer 1 (DBC1) deficiency results in apoptosis of breast cancer cells through impaired responses to UV-induced DNA damage. Cancer Lett. 2013 Jun 10;333(2):180-6. doi: 10.1016/j.canlet.2013.01.026. Epub 2013 Jan 22. 23352644
  89. Laurent G, de Boer VC, Finley LW, Sweeney M, Lu H, Schug TT, Cen Y, Jeong SM, Li X, Sauve AA, Haigis MC: SIRT4 represses peroxisome proliferator-activated receptor alpha activity to suppress hepatic fat oxidation. Mol Cell Biol. 2013 Nov;33(22):4552-61. doi: 10.1128/MCB.00087-13. Epub 2013 Sep 16. 24043310
  90. Nin V, Chini CC, Escande C, Capellini V, Chini EN: Deleted in breast cancer 1 (DBC1) protein regulates hepatic gluconeogenesis. J Biol Chem. 2014 Feb 28;289(9):5518-27. doi: 10.1074/jbc.M113.512913. Epub 2014 Jan 10. 24415752
  91. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. 24275569
  92. Park JH, Lee SW, Yang SW, Yoo HM, Park JM, Seong MW, Ka SH, Oh KH, Jeon YJ, Chung CH: Modification of DBC1 by SUMO2/3 is crucial for p53-mediated apoptosis in response to DNA damage. Nat Commun. 2014 Nov 18;5:5483. doi: 10.1038/ncomms6483. 25406032
  93. Magni M, Ruscica V, Buscemi G, Kim JE, Nachimuthu BT, Fontanella E, Delia D, Zannini L: Chk2 and REGgamma-dependent DBC1 regulation in DNA damage induced apoptosis. Nucleic Acids Res. 2014 Dec 1;42(21):13150-60. doi: 10.1093/nar/gku1065. Epub 2014 Oct 31. 25361978
  94. Pangon L, Mladenova D, Watkins L, Van Kralingen C, Currey N, Al-Sohaily S, Lecine P, Borg JP, Kohonen-Corish MR: MCC inhibits beta-catenin transcriptional activity by sequestering DBC1 in the cytoplasm. Int J Cancer. 2015 Jan 1;136(1):55-64. doi: 10.1002/ijc.28967. Epub 2014 May 27. 24824780
  95. Sakurabashi A, Wada-Hiraike O, Hirano M, Fu H, Isono W, Fukuda T, Morita Y, Tanikawa M, Miyamoto Y, Oda K, Kawana K, Osuga Y, Fujii T: CCAR2 negatively regulates nuclear receptor LXRalpha by competing with SIRT1 deacetylase. J Steroid Biochem Mol Biol. 2015 May;149:80-8. doi: 10.1016/j.jsbmb.2015.02.001. Epub 2015 Feb 3. 25661920