You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2009-03-27 01:37:50 UTC
Update Date2014-12-24 20:22:44 UTC
Accession NumberT3D0742
Identification
Common NameZinc selenide
ClassSmall Molecule
DescriptionZinc selenide is a chemical compound of zinc and selenium. It occurs naturally as the mineral stilleite. Zinc selenide is a semiconductor and is used in light-emitting diodes, diode lasers, x-ray and gamma ray detectors, and as as infrared optical material. Zinc is a metallic element with the atomic number 30. It is found in nature most often as the mineral sphalerite. Though excess zinc in harmful, in smaller amounts it is an essential element for life, as it is a cofactor for over 300 enzymes and is found in just as many transcription factors. Selenium is a nonmetal element with the atomic number 34 and the chemical symbol Se. Selenium rarely occurs in its elemental state in nature and is usually found in sulfide ores such as pyrite, partially replacing the sulfur in the ore matrix. It may also be found in silver, copper, lead, and nickel minerals. Though selenium salts are toxic in large amounts, trace amounts of the element are necessary for cellular function in most animals, forming the active center of the enzymes glutathione peroxidase, thioredoxin reductase, and three known deiodinase enzymes. (9, 2, 3, 4)
Compound Type
  • Industrial/Workplace Toxin
  • Inorganic Compound
  • Pollutant
  • Selenium Compound
  • Synthetic Compound
  • Zinc Compound
Chemical Structure
Thumb
Synonyms
Synonym
Selanylidenezinc
Zinc selenide, spectro
ZnSe
Chemical FormulaSeZn
Average Molecular Mass144.370 g/mol
Monoisotopic Mass143.846 g/mol
CAS Registry Number1315-09-9
IUPAC Nameselanylidenezinc
Traditional Nameselanylidenezinc
SMILES[Zn]=[Se]
InChI IdentifierInChI=1S/Se.Zn
InChI KeyInChIKey=SBIBMFFZSBJNJF-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of inorganic compounds known as miscellaneous mixed metal/non-metals. These are inorganic compounds containing non-metal as well as metal atoms but not belonging to afore mentioned classes.
KingdomInorganic compounds
Super ClassMixed metal/non-metal compounds
ClassMiscellaneous mixed metal/non-metals
Sub ClassNot Available
Direct ParentMiscellaneous mixed metal/non-metals
Alternative Parents
Substituents
  • Inorganic selenide
  • Inorganic salt
  • Miscellaneous mixed metal/non-metal
Molecular FrameworkNot Available
External DescriptorsNot Available
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceLight yellow solid.
Experimental Properties
PropertyValue
Melting Point1525°C
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
logP0.3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity13.11 m³·mol⁻¹ChemAxon
Polarizability3.66 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Toxicity Profile
Route of ExposureInhalation (3) ; oral (3) ; dermal (3)
Mechanism of ToxicityAnaemia results from the excessive absorption of zinc suppressing copper and iron absorption, most likely through competitive binding of intestinal mucosal cells. Unbalanced levels of copper and zinc binding to Cu,Zn-superoxide dismutase has been linked to amyotrophic lateral sclerosis (ALS). Stomach acid dissolves metallic zinc to give corrosive zinc chloride, which can cause damage to the stomach lining. Metal fume fever is thought to be an immune response to inhaled zinc. Selenium readily substitutes for sulfur in biomolecules and in many biochemical reactions, especially when the concentration of selenium is high and the concentration of sulfur is low. Inactivation of the sulfhydryl enzymes necessary for oxidative reactions in cellular respiration, through effects on mitochondrial and microsomal electron transport, might contribute to acute selenium toxicity. Selenomethionine (a common organic selenium compound) also appears to randomly substitute for methionine in protein synthesis. This substitution may affect the structure and functionability of the protein, for example, by altering disulfide bridges. Inorganic forms of selenium appear to react with tissue thiols by redox catalysis, resulting in formation of reactive oxygen species and causing damage by oxidative stress. (8, 2, 3, 1)
MetabolismZinc can enter the body through the lungs, skin, and gastrointestinal tract. Intestinal absorption of zinc is controlled by zinc carrier protein CRIP. Zinc also binds to metallothioneins, which help prevent absorption of excess zinc. Zinc is widely distributed and found in all tissues and tissues fluids, concentrating in the liver, gastrointestinal tract, kidney, skin, lung, brain, heart, and pancreas. In the bloodstream zinc is found bound to carbonic anhydrase in erythrocytes, as well as bound to albumin, _2-macroglobulin, and amino acids in the the plasma. Albumin and amino acid bound zinc can diffuse across tissue membranes. Zinc is excreted in the urine and faeces. Selenium may be absorbed through inhalation and ingestion, while some selenium compounds may also be absorbed dermally. Once in the body, selenium is distributed mainly to the liver and kidney. Selenium is an essential micronutrient and is a component of glutathione peroxidase, iodothyronine 5'-deiodinases, and thioredoxin reductase. Organic selenium is first metabolized into inorganic selenium. Inorganic selenium is reduced stepwise to the intermediate hydrogen selenide, which is either incorporated into selenoproteins after being transformed to selenophosphate and selenocysteinyl tRNA or excreted into the urine after being transformed into methylated metabolites of selenide. Elemental selenium is also methylated before excretion. Selenium is primarily eliminated in the urine and feces, but certain selenium compounds may also be exhaled. (8, 3)
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)3, not classifiable as to its carcinogenicity to humans. (7)
Uses/SourcesZinc selenide is a semiconductor and is used in light-emitting diodes, diode lasers, x-ray and gamma ray detectors, and as as infrared optical material. (4)
Minimum Risk LevelIntermediate Oral: 0.3 mg/kg/day (Zinc) (6) Chronic Oral: 0.3 mg/kg/day (Zinc) (6) Chronic Oral: 0.005 mg/kg/day (Selenium) (6)
Health EffectsChronic exposure to zinc causes anemia, atazia, lethargy, and decreases the level of good cholesterol in the body. It is also believed to cause pancreatic and reproductive damage. Chronic oral exposure to high concentrations of selenium compounds can produce a disease called selenosis. The major signs of selenosis are hair loss, nail brittleness, and neurological abnormalities (such as numbness and other odd sensations in the extremities). Animal studies have shown that selenium may also affect sperm production and the female reproductive cycle. (8, 3)
SymptomsIngestion of large doses of zinc causes stomach cramps, nausea, and vomiting. Acute inhalation of large amounts of zinc causes metal fume fever, which is characterized by chills, fever, headache, weakness, dryness of the nose and throat, chest pain, and coughing. Dermal contact with zinc results in skin irritation. Short-term oral exposure to high concentrations of selenium may cause nausea, vomiting, and diarrhea. Brief exposures to high levels of elemental selenium or selenium dioxide in air can result in respiratory tract irritation, bronchitis, difficulty breathing, and stomach pains. Longer-term exposure to either of these air-borne forms can cause respiratory irritation, bronchial spasms, and coughing. (8, 3)
TreatmentZinc poisoning is treated symptomatically, often by administering fluids such as water or milk, or with gastric lavage. (3)
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDNot Available
PubChem Compound ID4298215
ChEMBL IDNot Available
ChemSpider ID3504161
KEGG IDNot Available
UniProt IDNot Available
OMIM ID
ChEBI IDNot Available
BioCyc IDNot Available
CTD IDC044696
Stitch IDZinc selenide
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDST3D0742.pdf
General References
  1. Vonk WI, Klomp LW: Role of transition metals in the pathogenesis of amyotrophic lateral sclerosis. Biochem Soc Trans. 2008 Dec;36(Pt 6):1322-8. doi: 10.1042/BST0361322. [19021549 ]
  2. Wikipedia. Zinc. Last Updated 24 March 2009. [Link]
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2005). Toxicological profile for zinc. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  4. Wikipedia. Zinc selenide. Last Updated 23 March 2009. [Link]
  5. Wikipedia. Metallothionein. Last Updated 20 December 2008. [Link]
  6. ATSDR - Agency for Toxic Substances and Disease Registry (2001). Minimal Risk Levels (MRLs) for Hazardous Substances. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  7. International Agency for Research on Cancer (2014). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. [Link]
  8. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for selenium. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  9. Wikipedia. Selenium. Last Updated 7 June 2009. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Zinc ion binding
Specific Function:
Destroys radicals which are normally produced within the cells and which are toxic to biological systems.
Gene Name:
SOD1
Uniprot ID:
P00441
Molecular Weight:
15935.685 Da
References
  1. Vonk WI, Klomp LW: Role of transition metals in the pathogenesis of amyotrophic lateral sclerosis. Biochem Soc Trans. 2008 Dec;36(Pt 6):1322-8. doi: 10.1042/BST0361322. [19021549 ]