You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2009-06-19 21:58:53 UTC
Update Date2014-12-24 20:24:04 UTC
Accession NumberT3D1515
Identification
Common NameAluminium nitrate
ClassSmall Molecule
DescriptionAluminium nitrate is a chemical compound of aluminum. It is used in tanning leather, antiperspirants, corrosion inhibitors, extraction of uranium, petroleum refining, and as a nitrating agent. Aluminum is the most abundant metal in the earth's crust and is always found combined with other elements such as oxygen, silicon, and fluorine. Nitrite is a toxic compound known to cause methemoglobinemia. (9, 6, 7, 8)
Compound Type
  • Aluminum Compound
  • Industrial/Workplace Toxin
  • Inorganic Compound
  • Nitrate
  • Nitrite
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
Aluminium nitric acid
Aluminum nitrate
Aluminum nitrate(dot)
Aluminum trinitrate
Aluminum(111) nitrate (1:3)
Aluminum(III) nitrate (1:3)
Nitric acid, aluminum salt
Nitric acid, aluminum salt ( )
Nitric acid, aluminum salt, basic
Nitric acid, aluminum(3+) salt
Nitric acid, alumium salt
Chemical FormulaAlN3O9
Average Molecular Mass212.996 g/mol
Monoisotopic Mass212.945 g/mol
CAS Registry Number13473-90-0
IUPAC Namealuminium(3+) ion trinitrate
Traditional Namealuminium(3+) ion trinitrate
SMILES[Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O
InChI IdentifierInChI=1S/Al.3NO3/c;3*2-1(3)4/q+3;3*-1
InChI KeyInChIKey=JLDSOYXADOWAKB-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of inorganic compounds known as post-transition metal nitrates. These are inorganic compounds in which the largest oxoanion is nitrate, and in which the heaviest atom not in an oxoanion is a post-transition metal.
KingdomInorganic compounds
Super ClassMixed metal/non-metal compounds
ClassPost-transition metal oxoanionic compounds
Sub ClassPost-transition metal nitrates
Direct ParentPost-transition metal nitrates
Alternative Parents
Substituents
  • Post-transition metal nitrate
  • Inorganic post-transition metal salt
  • Inorganic oxide
  • Inorganic salt
Molecular FrameworkNot Available
External DescriptorsNot Available
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point66°C
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
logP0.028ChemAxon
pKa (Strongest Acidic)-1.4ChemAxon
pKa (Strongest Basic)-6.1ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area68.88 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity9.85 m³·mol⁻¹ChemAxon
Polarizability3.24 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014i-0090000000-8df802a0b47f9390ff0dJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-014i-0090000000-8df802a0b47f9390ff0dJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-014i-0090000000-8df802a0b47f9390ff0dJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-0090000000-e1b74db2830e2fd36615JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-03di-0090000000-e1b74db2830e2fd36615JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-03di-0090000000-e1b74db2830e2fd36615JSpectraViewer
Toxicity Profile
Route of ExposureOral (6) ; inhalation (6)
Mechanism of ToxicityThe main target organs of aluminum are the central nervous system and bone. Aluminum binds with dietary phosphorus and impairs gastrointestinal absorption of phosphorus. The decreased phosphate body burden results in osteomalacia (softening of the bones due to defective bone mineralization) and rickets. Aluminum's neurotoxicity is believed to involve several mechanisms. Changes in cytoskeletal protein functions as a results of altered phosphorylation, proteolysis, transport, and synthesis are believed to be one cause. Aluminum may induce neurobehavioral effects by affecting permeability of the blood-brain barrier, cholinergic activity, signal transduction pathways, lipid peroxidation, and impair neuronal glutamate nitric oxide-cyclic GMP pathway, as well as interfere with metabolism of essential trace elements because of similar coordination chemistries and consequent competitive interactions. Aluminum can also interact with estrogen receptors, increasing the expression of estrogen-related genes and contributing to the progression of breast cancer. Certain aluminum salts induce immune responses by activating inflammasomes. Nitrate's toxicity is a result of it's conversion to nitrite once in the body. Nitrite causes the autocatalytic oxidation of oxyhemoglobin to hydrogen peroxide and methemoglobin. This elevation of methemoglobin levels is a condition known as methemoglobinemia, and is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen. (3, 10, 6, 1, 2)
MetabolismAluminum is poorly absorbed following either oral or inhalation exposure and is essentially not absorbed dermally. The bioavailability of aluminum is strongly influenced by the aluminum compound and the presence of dietary constituents which can complex with aluminum and enhance or inhibit its absorption. Aluminum binds to various ligands in the blood and distributes to every organ, with highest concentrations found in bone and lung tissues. In living organisms, aluminum is believed to exist in four different forms: as free ions, as low-molecular-weight complexes, as physically bound macromolecular complexes, and as covalently bound macromolecular complexes. Absorbed aluminum is excreted principally in the urine and, to a lesser extent, in the bile, while unabsorbed aluminum is excreted in the faeces. Intake of some amount of nitrates and nitrites is a normal part of the nitrogen cycle in humans. In vivo conversion of nitrates to nitrites can occur in the gastrointestional tract under the right conditions, significantly enhancing nitrates' toxic potency. The major metabolic pathway for nitrate is conversion to nitrite, and then to ammonia. Nitrites, nitrates, and their metabolites are excreted in the urine. (9, 6)
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)Ingested nitrate or nitrite under conditions that result in endogenous nitrosation is probably carcinogenic to humans (Group 2A). (5)
Uses/SourcesAluminium nitrate is used in tanning leather, antiperspirants, corrosion inhibitors, extraction of uranium, petroleum refining, and as a nitrating agent. (8)
Minimum Risk LevelIntermediate Oral: 1.0 mg/kg/day (4) Chronic Oral: 1.0 mg/kg/day (4)
Health EffectsAluminum targets the nervous system and causes decreased nervous system performance and is associated with altered function of the blood-brain barrier. The accumulation of aluminum in the body may cause bone or brain diseases. High levels of aluminum have been linked to Alzheimer's disease. A small percentage of people are allergic to aluminium and experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium. Nitrate and nitrite poisoning causes methemoglobinemia. Nitrites may cause pregnancy complications and developmental effects. They may also be carcinogenic. (9, 6, 7)
SymptomsInhalating aluminum dust causes coughing and abnormal chest X-rays. A small percentage of people are allergic to aluminium and experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium. Nitrate and nitrite poisoning causes methemoglobinemia. Symptoms include cyanosis, cardiac dysrhythmias and circulatory failure, and progressive central nervous system (CNS) effects. CNS effects can range from mild dizziness and lethargy to coma and convulsions. (9, 6, 7)
TreatmentMethemoglobinemia can be treated with supplemental oxygen and methylene blue 1% solution administered intravenously slowly over five minutes followed by IV flush with normal saline. Methylene blue restores the iron in hemoglobin to its normal (reduced) oxygen-carrying state. (10)
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDNot Available
PubChem Compound ID26053
ChEMBL IDNot Available
ChemSpider ID24267
KEGG IDNot Available
UniProt IDNot Available
OMIM ID
ChEBI IDNot Available
BioCyc IDNot Available
CTD IDC050609
Stitch IDAluminium nitrate
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkAluminium_nitrate
References
Synthesis ReferenceNot Available
MSDST3D1515.pdf
General References
  1. Darbre PD: Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006 May-Jun;26(3):191-7. [16489580 ]
  2. Aimanianda V, Haensler J, Lacroix-Desmazes S, Kaveri SV, Bayry J: Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci. 2009 Jun;30(6):287-95. doi: 10.1016/j.tips.2009.03.005. Epub 2009 May 11. [19439372 ]
  3. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
  4. ATSDR - Agency for Toxic Substances and Disease Registry (2001). Minimal Risk Levels (MRLs) for Hazardous Substances. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  5. International Agency for Research on Cancer (2014). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. [Link]
  6. ATSDR - Agency for Toxic Substances and Disease Registry (2008). Toxicological profile for aluminum. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  7. Wikipedia. Aluminium. Last Updated 16 June 2009. [Link]
  8. Wikipedia. Aluminium nitrate. Last Updated 3 June 2009. [Link]
  9. ATSDR - Agency for Toxic Substances and Disease Registry (2007). Case Studies in Environmental Medicine. Nitrate/Nitrite Toxicity. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  10. Wikipedia. Methemoglobinemia. Last Updated 22 July 2009. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Oxygen transporter activity
Specific Function:
Involved in oxygen transport from the lung to the various peripheral tissues.
Gene Name:
HBA1
Uniprot ID:
P69905
Molecular Weight:
15257.405 Da
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
  2. Wikipedia. Methemoglobinemia. Last Updated 22 July 2009. [Link]
General Function:
Oxygen transporter activity
Specific Function:
Involved in oxygen transport from the lung to the various peripheral tissues.LVV-hemorphin-7 potentiates the activity of bradykinin, causing a decrease in blood pressure.Spinorphin: functions as an endogenous inhibitor of enkephalin-degrading enzymes such as DPP3, and as a selective antagonist of the P2RX3 receptor which is involved in pain signaling, these properties implicate it as a regulator of pain and inflammation.
Gene Name:
HBB
Uniprot ID:
P68871
Molecular Weight:
15998.34 Da
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
  2. Wikipedia. Methemoglobinemia. Last Updated 22 July 2009. [Link]
General Function:
Oxygen transporter activity
Specific Function:
Involved in oxygen transport from the lung to the various peripheral tissues.
Gene Name:
HBD
Uniprot ID:
P02042
Molecular Weight:
16055.41 Da
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
  2. Wikipedia. Methemoglobinemia. Last Updated 22 July 2009. [Link]
General Function:
Oxygen transporter activity
Specific Function:
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Gene Name:
HBE1
Uniprot ID:
P02100
Molecular Weight:
16202.71 Da
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
  2. Wikipedia. Methemoglobinemia. Last Updated 22 July 2009. [Link]
General Function:
Oxygen transporter activity
Specific Function:
Gamma chains make up the fetal hemoglobin F, in combination with alpha chains.
Gene Name:
HBG1
Uniprot ID:
P69891
Molecular Weight:
16140.37 Da
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
  2. Wikipedia. Methemoglobinemia. Last Updated 22 July 2009. [Link]
General Function:
Gamma chains make up the fetal hemoglobin F, in combination with alpha chains.
Specific Function:
Heme binding
Gene Name:
HBG2
Uniprot ID:
P69892
Molecular Weight:
16126.35 Da
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
  2. Wikipedia. Methemoglobinemia. Last Updated 22 July 2009. [Link]
General Function:
Oxygen transporter activity
Specific Function:
Not Available
Gene Name:
HBM
Uniprot ID:
Q6B0K9
Molecular Weight:
15617.97 Da
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
  2. Wikipedia. Methemoglobinemia. Last Updated 22 July 2009. [Link]
General Function:
Oxygen transporter activity
Specific Function:
Not Available
Gene Name:
HBQ1
Uniprot ID:
P09105
Molecular Weight:
15507.575 Da
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
  2. Wikipedia. Methemoglobinemia. Last Updated 22 July 2009. [Link]
General Function:
Oxygen transporter activity
Specific Function:
The zeta chain is an alpha-type chain of mammalian embryonic hemoglobin.
Gene Name:
HBZ
Uniprot ID:
P02008
Molecular Weight:
15636.845 Da
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
  2. Wikipedia. Methemoglobinemia. Last Updated 22 July 2009. [Link]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
Gene Name:
ESR1
Uniprot ID:
P03372
Molecular Weight:
66215.45 Da
References
  1. Darbre PD: Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006 May-Jun;26(3):191-7. [16489580 ]
General Function:
Transcription factor binding
Specific Function:
As the sensor component of the NLRP3 inflammasome, plays a crucial role in innate immunity and inflammation. In response to pathogens and other damage-associated signals, initiates the formation of the inflammasome polymeric complex, made of NLRP3, PYCARD and CASP1 (and possibly CASP4 and CASP5). Recruitement of proCASP1 to the inflammasome promotes its activation and CASP1-catalyzed IL1B and IL18 maturation and secretion in the extracellular milieu. Activation of NLRP3 inflammasome is also required for HMGB1 secretion (PubMed:22801494). The active cytokines and HMGB1 stimulate inflammatory responses. Inflammasomes can also induce pyroptosis, an inflammatory form of programmed cell death. Under resting conditions, NLRP3 is autoinhibited. NLRP3 activation stimuli include extracellular ATP, reactive oxygen species, K(+) efflux, crystals of monosodium urate or cholesterol, beta-amyloid fibers, environmental or industrial particles and nanoparticles, etc. However, it is unclear what constitutes the direct NLRP3 activator. Independently of inflammasome activation, regulates the differentiation of T helper 2 (Th2) cells and has a role in Th2 cell-dependent asthma and tumor growth (By similarity). During Th2 differentiation, required for optimal IRF4 binding to IL4 promoter and for IRF4-dependent IL4 transcription. Binds to the consensus DNA sequence 5'-GRRGGNRGAG-3'. May also participate in the transcription of IL5, IL13, GATA3, CCR3, CCR4 and MAF (By similarity).
Gene Name:
NLRP3
Uniprot ID:
Q96P20
Molecular Weight:
118171.375 Da
References
  1. Aimanianda V, Haensler J, Lacroix-Desmazes S, Kaveri SV, Bayry J: Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci. 2009 Jun;30(6):287-95. doi: 10.1016/j.tips.2009.03.005. Epub 2009 May 11. [19439372 ]
References
  1. ATSDR - Agency for Toxic Substances and Disease Registry (2008). Toxicological profile for aluminum. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]