You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2009-06-22 16:08:35 UTC
Update Date2014-12-24 20:24:37 UTC
Accession NumberT3D1771
Identification
Common NameZirconium(IV) bromide
ClassSmall Molecule
DescriptionZirconium(IV) bromide is a chemical compound of zirconium and bromine. Bromine is a halogen element with the symbol Br and atomic number 35. Diatomic bromine does not occur naturally, but bromine salts can be found in crustal rock. (3)
Compound Type
  • Amide
  • Amine
  • Bromide Compound
  • Ester
  • Ether
  • Industrial/Workplace Toxin
  • Inorganic Compound
  • Organic Compound
  • Organofluoride
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
Ethyl 2-benzamido-3,3,3-trifluoro-2-morpholinopropionate
Chemical FormulaC16H19F3N2O4
Average Molecular Mass360.328 g/mol
Monoisotopic Mass360.130 g/mol
CAS Registry Number1377-25-8
IUPAC Nameethyl 3,3,3-trifluoro-2-(morpholin-4-yl)-2-(phenylformamido)propanoate
Traditional Nameethyl 3,3,3-trifluoro-2-(morpholin-4-yl)-2-(phenylformamido)propanoate
SMILESCCOC(=O)C(NC(=O)C1=CC=CC=C1)(N1CCOCC1)C(F)(F)F
InChI IdentifierInChI=1S/C16H19F3N2O4/c1-2-25-14(23)15(16(17,18)19,21-8-10-24-11-9-21)20-13(22)12-6-4-3-5-7-12/h3-7H,2,8-11H2,1H3,(H,20,22)
InChI KeyInChIKey=BXCXPMIAMBTWPU-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as hippuric acids and derivatives. Hippuric acids and derivatives are compounds containing a hippuric acid or a derivative, with a structure characterized the presence of a benzoyl group linked to the N-terminal of a glycine.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassBenzoic acids and derivatives
Direct ParentHippuric acids and derivatives
Alternative Parents
Substituents
  • Hippuric acid or derivatives
  • N-acyl-alpha amino acid or derivatives
  • Alpha-amino acid or derivatives
  • Benzoyl
  • Morpholine
  • Oxazinane
  • Carboxamide group
  • Carboxylic acid ester
  • Secondary carboxylic acid amide
  • Carboxylic acid derivative
  • Dialkyl ether
  • Ether
  • Monocarboxylic acid or derivatives
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Organic nitrogen compound
  • Alkyl halide
  • Organic oxide
  • Alkyl fluoride
  • Organic oxygen compound
  • Carbonyl group
  • Organohalogen compound
  • Organofluoride
  • Organonitrogen compound
  • Organooxygen compound
  • Organopnictogen compound
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External DescriptorsNot Available
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Membrane
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.17 g/LALOGPS
logP2.39ALOGPS
logP2.65ChemAxon
logS-3.3ALOGPS
pKa (Strongest Acidic)14.84ChemAxon
pKa (Strongest Basic)-1.6ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area67.87 ŲChemAxon
Rotatable Bond Count7ChemAxon
Refractivity83.17 m³·mol⁻¹ChemAxon
Polarizability32.33 ųChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-08fr-1097000000-58618c8cc7391e4833d52016-06-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a4j-7495000000-e948fda9e75fd582696e2016-06-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-017r-9820000000-62a16e7103178ad2dcb62016-06-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-08fr-1019000000-2f89453c3b199a79f5352016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0551-9087000000-2e2d8816133e4233dbc52016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-00fr-9450000000-6a1d5efa1bea5c592c432016-08-03View Spectrum
Toxicity Profile
Route of ExposureOral (4) ; inhalation (4) ; dermal (4)
Mechanism of ToxicityBromine is a powerful oxidizing agent and is able to release oxygen free radicals from the water in mucous membranes. These free radicals are also potent oxidizers and produce tissue damage. In additon, the formation of hydrobromic and bromic acids will result in secondary irritation. The bromide ion is also known to affect the central nervous system, causing bromism. This is believed to be a result of bromide ions substituting for chloride ions in the in actions of neurotransmitters and transport systems, thus affecting numerous synaptic processes. (4, 5, 1)
MetabolismBromine is mainly absorbed via inhalation, but may also enter the body through dermal contact. Bromine salts can be ingested. Due to its reactivity, bromine quickly forms bromide and may be deposited in the tissues, displacing other halogens. (4)
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesNot Available
Minimum Risk LevelNot Available
Health EffectsBromine vapour causes irritation and direct damage to the mucous membranes. Elemental bromine also burns the skin. The bromide ion is a central nervous system depressant and chronic exposure produces neuronal effects. This is called bromism and can result in central reactions reaching from somnolence to coma, cachexia, exicosis, loss of reflexes or pathologic reflexes, clonic seizures, tremor, ataxia, loss of neural sensitivity, paresis, papillar edema of the eyes, abnormal speech, cerebral edema, delirium, aggressiveness, and psychoses. (3, 4, 5)
SymptomsBromine vapour causes irritation and direct damage to the mucous membranes. Symptoms include lacrimation, rhinorrhoea, eye irritation with mucous secretions from the oropharyngeal and upper airways, coughing, dyspnoea, choking, wheezing, epistaxis, and headache. The bromide ion is a central nervous system depressant producing ataxia, slurred speech, tremor, nausea, vomiting, lethargy, dizziness, visual disturbances, unsteadiness, headaches, impaired memory and concentration, disorientation and hallucinations. This is called bromism. (4, 5)
TreatmentEYES: irrigate opened eyes for several minutes under running water. INGESTION: do not induce vomiting. Rinse mouth with water (never give anything by mouth to an unconscious person). Seek immediate medical advice. SKIN: should be treated immediately by rinsing the affected parts in cold running water for at least 15 minutes, followed by thorough washing with soap and water. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. INHALATION: supply fresh air. If required provide artificial respiration.
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDNot Available
PubChem Compound ID389129
ChEMBL IDCHEMBL1568128
ChemSpider ID344880
KEGG IDNot Available
UniProt IDNot Available
OMIM ID
ChEBI IDNot Available
BioCyc IDNot Available
CTD IDNot Available
Stitch IDZirconium(IV) bromide
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDSNot Available
General References
  1. Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolnikowski GG, Vogel S, Duester G, Plutzky J: Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med. 2007 Jun;13(6):695-702. Epub 2007 May 27. [17529981 ]
  2. Golomb, BA (1999). A Review of the Scientific Literature As It Pertains to Gulf War Illnesses. Volume 2: Pyridostigmine Bromide. Washington, DC: RAND.
  3. Wikipedia. Bromine. Last Updated 9 June 2009. [Link]
  4. International Programme on Chemical Safety (IPCS) INCHEM (1992). Poison Information Monograph for Bromine. [Link]
  5. Wikipedia. Potassium bromide. Last Updated 9 June 2009. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport.
Gene Name:
CLCN1
Uniprot ID:
P35523
Molecular Weight:
108625.435 Da
References
  1. Simchowitz L: Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils. J Gen Physiol. 1988 Jun;91(6):835-60. [3047312 ]
  2. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport. May be important in urinary concentrating mechanisms.
Gene Name:
CLCNKA
Uniprot ID:
P51800
Molecular Weight:
75284.08 Da
References
  1. Simchowitz L: Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils. J Gen Physiol. 1988 Jun;91(6):835-60. [3047312 ]
  2. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport. May be important in urinary concentrating mechanisms.
Gene Name:
CLCNKB
Uniprot ID:
P51801
Molecular Weight:
75445.3 Da
References
  1. Simchowitz L: Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils. J Gen Physiol. 1988 Jun;91(6):835-60. [3047312 ]
  2. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]
General Function:
Gaba-gated chloride ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB3
Uniprot ID:
P28472
Molecular Weight:
54115.04 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRG2
Uniprot ID:
P18507
Molecular Weight:
54161.78 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]