Tmic
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2009-06-19 21:58:26 UTC
Update Date2014-12-24 20:23:22 UTC
Accession NumberT3D1200
Identification
Common NameCopper(I) bromide
ClassSmall Molecule
DescriptionCopper(I) bromide is a bromide of copper. Copper is a chemical element with the symbol Cu and atomic number 29. Copper is an essential elements in plants and animals as it is required for the normal functioning of more than 30 enzymes. It occurs naturally throughout the environment in rocks, soil, water, and air. Bromine is a halogen element with the symbol Br and atomic number 35. Diatomic bromine does not occur naturally, but bromine salts can be found in crustal rock. (12, 8, 9)
Compound Type
  • Bromide Compound
  • Copper Compound
  • Industrial/Workplace Toxin
  • Inorganic Compound
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
Cuprous bromide
Chemical FormulaBrCu
Average Molecular Mass143.450 g/mol
Monoisotopic Mass141.848 g/mol
CAS Registry Number7787-70-4
IUPAC Namebromocopper
Traditional Namecopper(I) bromide
SMILES[Cu]Br
InChI IdentifierInChI=1S/BrH.Cu/h1H;/q;+1/p-1
InChI KeyInChIKey=NKNDPYCGAZPOFS-UHFFFAOYSA-M
Chemical Taxonomy
Description belongs to the class of inorganic compounds known as transition metal bromides. These are inorganic compounds in which the largest halogen atom is Bromine, and the heaviest metal atom a transition metal.
KingdomInorganic compounds
Super ClassMixed metal/non-metal compounds
ClassTransition metal salts
Sub ClassTransition metal bromides
Direct ParentTransition metal bromides
Alternative Parents
Substituents
  • Transition metal bromide
  • Inorganic salt
Molecular FrameworkNot Available
External DescriptorsNot Available
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite crystals.
Experimental Properties
PropertyValue
Melting Point492°C, 765°K, 918°F
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
logP0.19ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity8.74 m³·mol⁻¹ChemAxon
Polarizability5.35 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0006-0900000000-d70b9d639ca3552b5b28View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0006-0900000000-d70b9d639ca3552b5b28View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0006-0900000000-d70b9d639ca3552b5b28View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0006-0900000000-ad872e561aa787b9c0e4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0006-0900000000-ad872e561aa787b9c0e4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-0900000000-ad872e561aa787b9c0e4View in MoNA
Toxicity Profile
Route of ExposureOral (8) ; inhalation (8) ; dermal (8)
Mechanism of ToxicityExcess copper is sequestered within hepatocyte lysosomes, where it is complexed with metallothionein. Copper hepatotoxicity is believed to occur when the lysosomes become saturated and copper accumulates in the nucleus, causing nuclear damage. This damage is possibly a result of oxidative damage, including lipid peroxidation. Copper inhibits the sulfhydryl group enzymes such as glucose-6-phosphate 1-dehydrogenase, glutathione reductase, and paraoxonases, which protect the cell from free oxygen radicals. It also influences gene expression and is a co-factor for oxidative enzymes such as cytochrome C oxidase and lysyl oxidase. In addition, the oxidative stress induced by copper is thought to activate acid sphingomyelinase, which lead to the production of ceramide, an apoptotic signal, as well as cause hemolytic anemia. Copper-induced emesis results from stimulation of the vagus nerve. Bromine is a powerful oxidizing agent and is able to release oxygen free radicals from the water in mucous membranes. These free radicals are also potent oxidizers and produce tissue damage. In additon, the formation of hydrobromic and bromic acids will result in secondary irritation. The bromide ion is also known to affect the central nervous system, causing bromism. This is believed to be a result of bromide ions substituting for chloride ions in the in actions of neurotransmitters and transport systems, thus affecting numerous synaptic processes. (13, 14, 3, 8, 5, 1, 11)
MetabolismCopper is mainly absorbed through the gastrointestinal tract, but it can also be inhalated and absorbed dermally. It passes through the basolateral membrane, possibly via regulatory copper transporters, and is transported to the liver and kidney bound to serum albumin. The liver is the critical organ for copper homoeostasis. In the liver and other tissues, copper is stored bound to metallothionein, amino acids, and in association with copper-dependent enzymes, then partitioned for excretion through the bile or incorporation into intra- and extracellular proteins. The transport of copper to the peripheral tissues is accomplished through the plasma attached to serum albumin, ceruloplasmin or low-molecular-weight complexes. Copper may induce the production of metallothionein and ceruloplasmin. The membrane-bound copper transporting adenosine triphosphatase (Cu-ATPase) transports copper ions into and out of cells. Physiologically normal levels of copper in the body are held constant by alterations in the rate and amount of copper absorption, compartmental distribution, and excretion. Bromine is mainly absorbed via inhalation, but may also enter the body through dermal contact. Bromine salts can be ingested. Due to its reactivity, bromine quickly forms bromide and may be deposited in the tissues, displacing other halogens. (13, 8, 10)
Toxicity ValuesNot Available
Lethal Dose10 to 20 grams for an adult human (copper salts). (4)
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesNot Available
Minimum Risk LevelAcute Oral: 0.01 mg/kg/day (Copper) (7) Intermediate Oral: 0.01 mg/kg/day (Copper) (7)
Health EffectsPeople must absorb small amounts of copper every day because copper is essential for good health, however, high levels of copper can be harmful. Very-high doses of copper can cause damage to your liver and kidneys, and can even cause death. Copper may induce allergic responses in sensitive individuals. Bromine vapour causes irritation and direct damage to the mucous membranes. Elemental bromine also burns the skin. The bromide ion is a central nervous system depressant and chronic exposure produces neuronal effects. This is called bromism and can result in central reactions reaching from somnolence to coma, cachexia, exicosis, loss of reflexes or pathologic reflexes, clonic seizures, tremor, ataxia, loss of neural sensitivity, paresis, papillar edema of the eyes, abnormal speech, cerebral edema, delirium, aggressiveness, and psychoses. (12, 13, 14, 9, 10)
SymptomsBreathing high levels of copper can cause irritation of the nose and throat. Ingesting high levels of copper can cause nausea, vomiting, diarrhea, headache, dizziness, and respiratory difficulty. Bromine vapour causes irritation and direct damage to the mucous membranes. Symptoms include lacrimation, rhinorrhoea, eye irritation with mucous secretions from the oropharyngeal and upper airways, coughing, dyspnoea, choking, wheezing, epistaxis, and headache. The bromide ion is a central nervous system depressant producing ataxia, slurred speech, tremor, nausea, vomiting, lethargy, dizziness, visual disturbances, unsteadiness, headaches, impaired memory and concentration, disorientation and hallucinations. This is called bromism. (13, 14, 9, 10)
TreatmentEYES: irrigate opened eyes for several minutes under running water. INGESTION: do not induce vomiting. Rinse mouth with water (never give anything by mouth to an unconscious person). Seek immediate medical advice. SKIN: should be treated immediately by rinsing the affected parts in cold running water for at least 15 minutes, followed by thorough washing with soap and water. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. INHALATION: supply fresh air. If required provide artificial respiration.
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDNot Available
PubChem Compound ID11715197
ChEMBL IDNot Available
ChemSpider IDNot Available
KEGG IDNot Available
UniProt IDNot Available
OMIM ID
ChEBI IDNot Available
BioCyc IDNot Available
CTD IDNot Available
Stitch IDCopper(I) bromide
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDST3D1200.pdf
General References
  1. Brewer GJ: A brand new mechanism for copper toxicity. J Hepatol. 2007 Oct;47(4):621-2. Epub 2007 Jul 23. [17697726 ]
  2. Bardsley PA, Howard P, DeBacker W, Vermeire P, Mairesse M, Ledent C, Radermecker M, Bury T, Ansquer J: Two years treatment with almitrine bismesylate in patients with hypoxic chronic obstructive airways disease. Eur Respir J. 1991 Mar;4(3):308-10. [1907566 ]
  3. Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolnikowski GG, Vogel S, Duester G, Plutzky J: Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med. 2007 Jun;13(6):695-702. Epub 2007 May 27. [17529981 ]
  4. Baselt RC (2000). Disposition of Toxic Drugs and Chemicals in Man, 5th ed. Foster City, CA: Chemical Toxicology Institute.
  5. Baxter PJ, Adams PH, & Aw TC (2000). Hunter's Diseases of Occupations. 9th ed. New York, NY: Oxford University Press Inc.
  6. Golomb, BA (1999). A Review of the Scientific Literature As It Pertains to Gulf War Illnesses. Volume 2: Pyridostigmine Bromide. Washington, DC: RAND.
  7. ATSDR - Agency for Toxic Substances and Disease Registry (2001). Minimal Risk Levels (MRLs) for Hazardous Substances. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  8. Wikipedia. Copper. Last Updated 29 May 2009. [Link]
  9. ATSDR - Agency for Toxic Substances and Disease Registry (2004). Toxicological profile for copper. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  10. International Programme on Chemical Safety (IPCS) INCHEM (1998). Environmental Health Criteria for Copper. [Link]
  11. US Environmental Protection Agency (2008). Drinking Water Health Advisory for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene. [Link]
  12. Wikipedia. Bromine. Last Updated 9 June 2009. [Link]
  13. International Programme on Chemical Safety (IPCS) INCHEM (1992). Poison Information Monograph for Bromine. [Link]
  14. Wikipedia. Potassium bromide. Last Updated 9 June 2009. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Protein homodimerization activity
Specific Function:
Catalyzes the rate-limiting step of the oxidative pentose-phosphate pathway, which represents a route for the dissimilation of carbohydrates besides glycolysis. The main function of this enzyme is to provide reducing power (NADPH) and pentose phosphates for fatty acid and nucleic acid synthesis.
Gene Name:
G6PD
Uniprot ID:
P11413
Molecular Weight:
59256.31 Da
References
  1. Brewer GJ: A brand new mechanism for copper toxicity. J Hepatol. 2007 Oct;47(4):621-2. Epub 2007 Jul 23. [17697726 ]
  2. Baxter PJ, Adams PH, & Aw TC (2000). Hunter's Diseases of Occupations. 9th ed. New York, NY: Oxford University Press Inc.
  3. Wikipedia. Copper. Last Updated 29 May 2009. [Link]
  4. US Environmental Protection Agency (2008). Drinking Water Health Advisory for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene. [Link]
General Function:
Nadp binding
Specific Function:
Maintains high levels of reduced glutathione in the cytosol.
Gene Name:
GSR
Uniprot ID:
P00390
Molecular Weight:
56256.565 Da
References
  1. Brewer GJ: A brand new mechanism for copper toxicity. J Hepatol. 2007 Oct;47(4):621-2. Epub 2007 Jul 23. [17697726 ]
  2. Baxter PJ, Adams PH, & Aw TC (2000). Hunter's Diseases of Occupations. 9th ed. New York, NY: Oxford University Press Inc.
  3. Wikipedia. Copper. Last Updated 29 May 2009. [Link]
  4. US Environmental Protection Agency (2008). Drinking Water Health Advisory for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene. [Link]
General Function:
Protein homodimerization activity
Specific Function:
Hydrolyzes the toxic metabolites of a variety of organophosphorus insecticides. Capable of hydrolyzing a broad spectrum of organophosphate substrates and lactones, and a number of aromatic carboxylic acid esters. Mediates an enzymatic protection of low density lipoproteins against oxidative modification and the consequent series of events leading to atheroma formation.
Gene Name:
PON1
Uniprot ID:
P27169
Molecular Weight:
39730.99 Da
References
  1. Brewer GJ: A brand new mechanism for copper toxicity. J Hepatol. 2007 Oct;47(4):621-2. Epub 2007 Jul 23. [17697726 ]
  2. Baxter PJ, Adams PH, & Aw TC (2000). Hunter's Diseases of Occupations. 9th ed. New York, NY: Oxford University Press Inc.
  3. Wikipedia. Copper. Last Updated 29 May 2009. [Link]
  4. US Environmental Protection Agency (2008). Drinking Water Health Advisory for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene. [Link]
General Function:
Protein homodimerization activity
Specific Function:
Has low activity towards the organophosphate paraxon and aromatic carboxylic acid esters. Rapidly hydrolyzes lactones such as statin prodrugs (e.g. lovastatin). Hydrolyzes aromatic lactones and 5- or 6-member ring lactones with aliphatic substituents but not simple lactones or those with polar substituents.
Gene Name:
PON3
Uniprot ID:
Q15166
Molecular Weight:
39607.185 Da
References
  1. Brewer GJ: A brand new mechanism for copper toxicity. J Hepatol. 2007 Oct;47(4):621-2. Epub 2007 Jul 23. [17697726 ]
  2. Baxter PJ, Adams PH, & Aw TC (2000). Hunter's Diseases of Occupations. 9th ed. New York, NY: Oxford University Press Inc.
  3. Wikipedia. Copper. Last Updated 29 May 2009. [Link]
  4. US Environmental Protection Agency (2008). Drinking Water Health Advisory for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene. [Link]
General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport.
Gene Name:
CLCN1
Uniprot ID:
P35523
Molecular Weight:
108625.435 Da
References
  1. Simchowitz L: Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils. J Gen Physiol. 1988 Jun;91(6):835-60. [3047312 ]
  2. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport. May be important in urinary concentrating mechanisms.
Gene Name:
CLCNKA
Uniprot ID:
P51800
Molecular Weight:
75284.08 Da
References
  1. Simchowitz L: Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils. J Gen Physiol. 1988 Jun;91(6):835-60. [3047312 ]
  2. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport. May be important in urinary concentrating mechanisms.
Gene Name:
CLCNKB
Uniprot ID:
P51801
Molecular Weight:
75445.3 Da
References
  1. Simchowitz L: Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils. J Gen Physiol. 1988 Jun;91(6):835-60. [3047312 ]
  2. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Not Available
Specific Function:
Not Available
Gene Name:
SNCA
Uniprot ID:
P37840
Molecular Weight:
14460.155 Da
References
  1. Davies P, Fontaine SN, Moualla D, Wang X, Wright JA, Brown DR: Amyloidogenic metal-binding proteins: new investigative pathways. Biochem Soc Trans. 2008 Dec;36(Pt 6):1299-303. doi: 10.1042/BST0361299. [19021544 ]
General Function:
Transition metal ion binding
Specific Function:
Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1.Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity. Also binds GPC1 in lipid rafts.Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain.The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6).
Gene Name:
APP
Uniprot ID:
P05067
Molecular Weight:
86942.715 Da
References
  1. Davies P, Fontaine SN, Moualla D, Wang X, Wright JA, Brown DR: Amyloidogenic metal-binding proteins: new investigative pathways. Biochem Soc Trans. 2008 Dec;36(Pt 6):1299-303. doi: 10.1042/BST0361299. [19021544 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]
General Function:
Gaba-gated chloride ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB3
Uniprot ID:
P28472
Molecular Weight:
54115.04 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRG2
Uniprot ID:
P18507
Molecular Weight:
54161.78 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]