Record Information
Version2.0
Creation Date2009-06-19 21:58:31 UTC
Update Date2014-12-24 20:23:31 UTC
Accession NumberT3D1266
Identification
Common NameTin selenide
ClassSmall Molecule
DescriptionTin selenide is a chemical compound of tin and selenium. Tin is a chemical element with the symbol Sn and atomic number 50. It is a natural component of the earth's crust and is obtained chiefly from the mineral cassiterite, where it occurs as tin dioxide. Selenium is a nonmetal element with the atomic number 34 and the chemical symbol Se. Selenium rarely occurs in its elemental state in nature and is usually found in sulfide ores such as pyrite, partially replacing the sulfur in the ore matrix. It may also be found in silver, copper, lead, and nickel minerals. Though selenium salts are toxic in large amounts, trace amounts of the element are necessary for cellular function in most animals, forming the active center of the enzymes glutathione peroxidase, thioredoxin reductase, and three known deiodinase enzymes. (8, 4, 6)
Compound Type
  • Industrial/Workplace Toxin
  • Inorganic Compound
  • Pollutant
  • Selenium Compound
  • Synthetic Compound
  • Tin Compound
Chemical Structure
Thumb
Synonyms
Synonym
3-Aminopyridin-2(1H)-one analogue 35
Pyridinone deriv.
Chemical FormulaSeSn
Average Molecular Mass197.670 g/mol
Monoisotopic Mass199.819 g/mol
CAS Registry Number1315-06-0
IUPAC Namestannane selandiide
Traditional Namestannane selandiide
SMILES[Se--].[Sn]
InChI IdentifierInChI=1S/Se.Sn/q-2;
InChI KeyInChIKey=ZSNQLSMQQGDQQU-UHFFFAOYSA-N
Chemical Taxonomy
ClassificationNot classified
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
logP-0.5ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity13.11 m³·mol⁻¹ChemAxon
Polarizability1.78 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Toxicity Profile
Route of ExposureOral (5) ; inhalation (5) ; dermal (5)
Mechanism of ToxicitySelenium readily substitutes for sulfur in biomolecules and in many biochemical reactions, especially when the concentration of selenium is high and the concentration of sulfur is low. Inactivation of the sulfhydryl enzymes necessary for oxidative reactions in cellular respiration, through effects on mitochondrial and microsomal electron transport, might contribute to acute selenium toxicity. Selenomethionine (a common organic selenium compound) also appears to randomly substitute for methionine in protein synthesis. This substitution may affect the structure and functionability of the protein, for example, by altering disulfide bridges. Inorganic forms of selenium appear to react with tissue thiols by redox catalysis, resulting in formation of reactive oxygen species and causing damage by oxidative stress. Inorganic and organic tin compounds are weak inhibitors of alcohol dehydrogenase. (1, 7)
MetabolismThough tin metal is very poorly absorbed, tin compounds may be absorbed via oral, inhalation, or dermal routes, with organotin compounds being much more readily absorbed than inorganic tin compounds. Tin may enter the bloodstream and bind to hemoglobin, where it is distributed and accumulates mainly in the kidney, liver, lung, and bone. Tin and its metabolites are excreted mainly in the urine and feces. Selenium may be absorbed through inhalation and ingestion, while some selenium compounds may also be absorbed dermally. Once in the body, selenium is distributed mainly to the liver and kidney. Selenium is an essential micronutrient and is a component of glutathione peroxidase, iodothyronine 5'-deiodinases, and thioredoxin reductase. Organic selenium is first metabolized into inorganic selenium. Inorganic selenium is reduced stepwise to the intermediate hydrogen selenide, which is either incorporated into selenoproteins after being transformed to selenophosphate and selenocysteinyl tRNA or excreted into the urine after being transformed into methylated metabolites of selenide. Elemental selenium is also methylated before excretion. Selenium is primarily eliminated in the urine and feces, but certain selenium compounds may also be exhaled. (7, 5)
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)3, not classifiable as to its carcinogenicity to humans. (3)
Uses/SourcesNot Available
Minimum Risk LevelChronic Oral: 0.005 mg/kg/day (Selenium) (2)
Health EffectsIngestion of large amounts of inorganic tin compounds can cause stomachache, anemia, and liver and kidney problems. Chronic oral exposure to high concentrations of selenium compounds can produce a disease called selenosis. The major signs of selenosis are hair loss, nail brittleness, and neurological abnormalities (such as numbness and other odd sensations in the extremities). Animal studies have shown that selenium may also affect sperm production and the female reproductive cycle. (7, 4, 5)
SymptomsInorganic or organic tin compounds placed on the skin or in the eyes can produce skin and eye irritation. Short-term oral exposure to high concentrations of selenium may cause nausea, vomiting, and diarrhea. Brief exposures to high levels of elemental selenium or selenium dioxide in air can result in respiratory tract irritation, bronchitis, difficulty breathing, and stomach pains. Longer-term exposure to either of these air-borne forms can cause respiratory irritation, bronchial spasms, and coughing. (7, 5)
TreatmentEYES: irrigate opened eyes for several minutes under running water. INGESTION: do not induce vomiting. Rinse mouth with water (never give anything by mouth to an unconscious person). Seek immediate medical advice. SKIN: should be treated immediately by rinsing the affected parts in cold running water for at least 15 minutes, followed by thorough washing with soap and water. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. INHALATION: supply fresh air. If required provide artificial respiration.
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDNot Available
PubChem Compound ID454406
ChEMBL IDNot Available
ChemSpider IDNot Available
KEGG IDNot Available
UniProt IDNot Available
OMIM ID
ChEBI IDNot Available
BioCyc IDNot Available
CTD IDNot Available
Stitch IDTin selenide
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDSNot Available
General References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
  2. ATSDR - Agency for Toxic Substances and Disease Registry (2001). Minimal Risk Levels (MRLs) for Hazardous Substances. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  3. International Agency for Research on Cancer (2014). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. [Link]
  4. Wikipedia. Tributyltin. Last Updated 31 May 2009. [Link]
  5. ATSDR - Agency for Toxic Substances and Disease Registry (2005). Toxicological profile for tin. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  6. Wikipedia. Tin. Last Updated 28 May 2009. [Link]
  7. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for selenium. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  8. Wikipedia. Selenium. Last Updated 7 June 2009. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Zinc ion binding
Specific Function:
Not Available
Gene Name:
ADH1A
Uniprot ID:
P07327
Molecular Weight:
39858.37 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Not Available
Gene Name:
ADH1B
Uniprot ID:
P00325
Molecular Weight:
39854.21 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Not Available
Gene Name:
ADH1C
Uniprot ID:
P00326
Molecular Weight:
39867.27 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Not Available
Gene Name:
ADH4
Uniprot ID:
P08319
Molecular Weight:
40221.335 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Not Available
Gene Name:
ADH6
Uniprot ID:
P28332
Molecular Weight:
39088.335 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Could function in retinol oxidation for the synthesis of retinoic acid, a hormone important for cellular differentiation. Medium-chain (octanol) and aromatic (m-nitrobenzaldehyde) compounds are the best substrates. Ethanol is not a good substrate but at the high ethanol concentrations reached in the digestive tract, it plays a role in the ethanol oxidation and contributes to the first pass ethanol metabolism.
Gene Name:
ADH7
Uniprot ID:
P40394
Molecular Weight:
41480.985 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Class-III ADH is remarkably ineffective in oxidizing ethanol, but it readily catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione.
Gene Name:
ADH5
Uniprot ID:
P11766
Molecular Weight:
39723.945 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]