You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2014-08-29 06:12:57 UTC
Update Date2014-12-24 20:26:45 UTC
Accession NumberT3D4279
Identification
Common NameAdenine
ClassSmall Molecule
DescriptionAdenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (1, 2).
Compound Type
  • Amine
  • Animal Toxin
  • Dietary Supplement
  • Drug
  • Food Toxin
  • Metabolite
  • Micronutrient
  • Natural Compound
  • Nutraceutical
  • Organic Compound
  • Supplement
Chemical Structure
Thumb
Synonyms
Synonym
1,6-Dihydro-6-iminopurine
1H-Purin-6-amine
1H-Purine-6-amine
3,6-Dihydro-6-iminopurine
6-Amino-1H-purine
6-Amino-3H-purine
6-Amino-7H-purine
6-Amino-9H-purine
6-Amino-Purine
6-Aminopurine
9H-Purin-6-amine
9H-Purin-6-yl-amin
9H-Purin-6-ylamine
9H-Purine-6-amine
A
Ade
Adenin
Adeninimine
Leuco-4
Vitamin B4
Chemical FormulaC5H5N5
Average Molecular Mass135.127 g/mol
Monoisotopic Mass135.054 g/mol
CAS Registry Number73-24-5
IUPAC Name7H-purin-6-amine
Traditional Namevitamin B4
SMILESNC1=C2N=CN=C2NC=N1
InChI IdentifierInChI=1S/C5H5N5/c6-4-3-5(9-1-7-3)10-2-8-4/h1-2H,(H3,6,7,8,9,10)
InChI KeyInChIKey=GFFGJBXGBJISGV-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as 6-aminopurines. These are purines that carry an amino group at position 6. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassImidazopyrimidines
Sub ClassPurines and purine derivatives
Direct Parent6-aminopurines
Alternative Parents
Substituents
  • 6-aminopurine
  • Aminopyrimidine
  • Imidolactam
  • Pyrimidine
  • Heteroaromatic compound
  • Imidazole
  • Azole
  • Azacycle
  • Organic nitrogen compound
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Primary amine
  • Organonitrogen compound
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginEndogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Lysosome
  • Nucleus
Biofluid LocationsNot Available
Tissue Locations
  • All Tissues
  • Prostate
Pathways
NameSMPDB LinkKEGG Link
Purine MetabolismSMP00050 map00230
Adenosine Deaminase DeficiencySMP00144 Not Available
ApplicationsNot Available
Biological Roles
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point360 dec°C
Boiling PointNot Available
Solubility1030 mg/L (at 25°C)
LogP-0.09
Predicted Properties
PropertyValueSource
Water Solubility11.5 g/LALOGPS
logP-0.38ALOGPS
logP-0.57ChemAxon
logS-1.1ALOGPS
pKa (Strongest Acidic)10.29ChemAxon
pKa (Strongest Basic)3.64ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area80.48 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity38.22 m³·mol⁻¹ChemAxon
Polarizability12.29 ųChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-03di-3490000000-7efe9518c90307a437072014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-03di-2690000000-6dc072eb8483a2c38e182014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-00di-9350000000-220125189c286547e86c2014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-03di-4690000000-2d327a6944df534118862014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-MS (1 TMS)splash10-0006-3920000000-f488e8aa64272a07b3d92014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-MS (3 TMS)splash10-000i-0329000000-0b012fa483ce8764d2af2014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-03di-3490000000-7efe9518c90307a437072017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-03di-2690000000-6dc072eb8483a2c38e182017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-9350000000-220125189c286547e86c2017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-03di-4690000000-2d327a6944df534118862017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-0006-3920000000-f488e8aa64272a07b3d92017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-000i-0329000000-0b012fa483ce8764d2af2017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-03di-2690000000-534edabc8ab24e32f3f52017-09-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0a5i-9700000000-e85c2b0bb19cf3401e5a2016-09-22View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0a4i-0900000000-b24b09629456779d96e62012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-001i-0900000000-80808f34c7497219d3492012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) 30V, Negativesplash10-0a5c-6900000000-f6c0abd6d3fca61bd7f72012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0a4i-0900000000-b24b09629456779d96e62017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-001i-0900000000-80808f34c7497219d3492017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-0a5c-6900000000-f6c0abd6d3fca61bd7f72017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - , negativesplash10-001i-0900000000-cbe0a995dab473351f432017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - , negativesplash10-001i-0900000000-bfc42d662f222a7c16c72017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-0a59-4900000000-099ee82fc2f658e1cd042021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-001i-0900000000-c100f5ac716c497996be2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-001i-0900000000-379c5c6ea7b1135677c62021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-014i-9000000000-346f2325bf2e66e7a3392021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-001i-0900000000-87f60041335919c4a0de2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-014l-9000000000-a71034da1c65738b37bd2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 30V, Negativesplash10-0a5c-6900000000-f6c0abd6d3fca61bd7f72021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-001i-0900000000-090d369100e8edeb51452021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-001i-0900000000-a56b3bd296195086b5d02021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-001i-0900000000-a76f7f2350e82c6763712021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-053r-0900000000-4213d2fff3cdad674b8e2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-0a59-0900000000-d0f2f3ccc46d430b6c3c2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-0900000000-bf20f302482d1cc4a27d2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-0a59-3900000000-f4155217d6bcdbbcc17f2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 30V, Negativesplash10-066u-9400000000-ada6d909e20e2184a05b2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-000i-0900000000-95d4894082ada0b247732012-07-24View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-014i-5900000000-66b1c086d7a666b2d02b2012-07-24View Spectrum
MSMass Spectrum (Electron Ionization)splash10-000i-6900000000-39944576233751576a912014-09-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, experimental)Not Available2012-12-04View Spectrum
1D NMR1H NMR Spectrum (1D, 90 MHz, CDCl3, experimental)Not Available2014-09-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50.18 MHz, DMSO-d6, experimental)Not Available2014-09-23View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
2D NMR[1H, 1H]-TOCSY. Unexported temporarily by An Chi on Oct 15, 2021 until json or nmrML file is generated. 2D NMR Spectrum (experimental)Not Available2012-12-04View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)Not Available2012-12-04View Spectrum
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityAdenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose, and it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between reactions. In older literature, adenine was sometimes called Vitamin B4Not Available
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesFor nutritional supplementation, also for treating dietary shortage or imbalance
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDDB00173
HMDB IDHMDB00034
PubChem Compound ID190
ChEMBL IDCHEMBL226345
ChemSpider ID185
KEGG IDC00147
UniProt IDNot Available
OMIM ID
ChEBI ID16708
BioCyc IDADENINE
CTD IDNot Available
Stitch IDNot Available
PDB IDADE
ACToR IDNot Available
Wikipedia LinkAdenine
References
Synthesis Reference

Eiichi Yonemitsu, Tomiya Isshiki, Yasuhiko Kijima, “Process for preparing adenine.” U.S. Patent US4059582, issued March, 1964.

MSDSLink
General References
  1. Rolfes RJ: Regulation of purine nucleotide biosynthesis: in yeast and beyond. Biochem Soc Trans. 2006 Nov;34(Pt 5):786-90. [17052198 ]
  2. Simoni RE, Gomes LN, Scalco FB, Oliveira CP, Aquino Neto FR, de Oliveira ML: Uric acid changes in urine and plasma: an effective tool in screening for purine inborn errors of metabolism and other pathological conditions. J Inherit Metab Dis. 2007 Jun;30(3):295-309. Epub 2007 May 19. [17520339 ]
  3. Moriyama H, Iizuka T, Nagai M, Hoshi K: Adenine, an inhibitor of platelet aggregation, from the leaves of Cassia alata. Biol Pharm Bull. 2003 Sep;26(9):1361-4. [12951489 ]
  4. Liu Y, Xu G, Xu C, Garcia L, Lin CC, Yeh LT: Ultra sensitive method for the determination of 9-(2-phosphonylmethoxyethyl)adenine in human serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Apr 25;803(2):293-8. [15063338 ]
  5. Terry KL, De Vivo I, Titus-Ernstoff L, Shih MC, Cramer DW: Androgen receptor cytosine, adenine, guanine repeats, and haplotypes in relation to ovarian cancer risk. Cancer Res. 2005 Jul 1;65(13):5974-81. [15994977 ]
  6. Steiner MC, Evans R, Deacon SJ, Singh SJ, Patel P, Fox J, Greenhaff PL, Morgan MD: Adenine nucleotide loss in the skeletal muscles during exercise in chronic obstructive pulmonary disease. Thorax. 2005 Nov;60(11):932-6. Epub 2005 Jul 29. [16055624 ]
  7. Di Pietro V, Perruzza I, Amorini AM, Balducci A, Ceccarelli L, Lazzarino G, Barsotti P, Giardina B, Tavazzi B: Clinical, biochemical and molecular diagnosis of a compound homozygote for the 254 bp deletion-8 bp insertion of the APRT gene suffering from severe renal failure. Clin Biochem. 2007 Jan;40(1-2):73-80. Epub 2006 Oct 19. [17126311 ]
  8. Whitehead JW, Lee GP, Gharagozloo P, Hofer P, Gehrig A, Wintergerst P, Smyth D, McCoull W, Hachicha M, Patel A, Kyle DJ: 8-Substituted analogues of 3-(3-cyclopentyloxy-4-methoxy-benzyl)-8-isopropyl-adenine: highly potent and selective PDE4 inhibitors. J Med Chem. 2005 Feb 24;48(4):1237-43. [15715490 ]
  9. Reimers HJ, Packham MA, Mustard JF: Labeling of the releasable adenine nucleotides of washed human platelets. Blood. 1977 Jan;49(1):89-99. [401462 ]
  10. Hartmann S, Okun JG, Schmidt C, Langhans CD, Garbade SF, Burgard P, Haas D, Sass JO, Nyhan WL, Hoffmann GF: Comprehensive detection of disorders of purine and pyrimidine metabolism by HPLC with electrospray ionization tandem mass spectrometry. Clin Chem. 2006 Jun;52(6):1127-37. Epub 2006 Apr 13. [16613999 ]
  11. Eells JT, Spector R: Purine and pyrimidine base and nucleoside concentrations in human cerebrospinal fluid and plasma. Neurochem Res. 1983 Nov;8(11):1451-7. [6656991 ]
  12. Ohdoi C, Nyhan WL, Kuhara T: Chemical diagnosis of Lesch-Nyhan syndrome using gas chromatography-mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 15;792(1):123-30. [12829005 ]
  13. Ruiz-Stewart I, Kazerounian S, Pitari GM, Schulz S, Waldman SA: Soluble guanylate cyclase is allosterically inhibited by direct interaction with 2-substituted adenine nucleotides. Eur J Biochem. 2002 Apr;269(8):2186-93. [11985597 ]
  14. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [19212411 ]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Metal ion binding
Specific Function:
Catalyzes the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. Carries out three functions: biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase. Involved in inhibition of fatty acid and glucose oxidation and enhancement of fat storage (By similarity). May play a role in regulation of mitochondrial fatty acid oxidation through malonyl-CoA-dependent inhibition of carnitine palmitoyltransferase 1 (By similarity).
Gene Name:
ACACB
Uniprot ID:
O00763
Molecular Weight:
276538.575 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Rasmussen JT, Rosendal J, Knudsen J: Interaction of acyl-CoA binding protein (ACBP) on processes for which acyl-CoA is a substrate, product or inhibitor. Biochem J. 1993 Jun 15;292 ( Pt 3):907-13. [8318018 ]
  4. Witters LA, Mendel DB, Colliton JW: Modulation of acetyl-CoA carboxylase by inhibitors of IMP dehydrogenase: implications for insulin regulation. Arch Biochem Biophys. 1987 Jan;252(1):130-5. [2880560 ]
  5. Itani SI, Saha AK, Kurowski TG, Coffin HR, Tornheim K, Ruderman NB: Glucose autoregulates its uptake in skeletal muscle: involvement of AMP-activated protein kinase. Diabetes. 2003 Jul;52(7):1635-40. [12829626 ]
  6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
General Function:
Amp binding
Specific Function:
Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis.
Gene Name:
APRT
Uniprot ID:
P07741
Molecular Weight:
19607.535 Da
References
  1. Barrett C, Alley J, Pulido JC, Spurling H, Li P, Parsons T, Mallender WD, Bembenek ME: Configuration of a scintillation proximity assay for the activity assessment of recombinant human adenine phosphoribosyltransferase. Assay Drug Dev Technol. 2006 Dec;4(6):661-9. [17199504 ]
  2. Di Pietro V, Perruzza I, Amorini AM, Balducci A, Ceccarelli L, Lazzarino G, Barsotti P, Giardina B, Tavazzi B: Clinical, biochemical and molecular diagnosis of a compound homozygote for the 254 bp deletion-8 bp insertion of the APRT gene suffering from severe renal failure. Clin Biochem. 2007 Jan;40(1-2):73-80. Epub 2006 Oct 19. [17126311 ]
  3. Katahira R, Ashihara H: Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. Planta. 2006 Dec;225(1):115-26. Epub 2006 Jul 15. [16845529 ]
  4. Katahira R, Ashihara H: Role of adenosine salvage in wound-induced adenylate biosynthesis in potato tuber slices. Plant Physiol Biochem. 2006 Oct;44(10):551-5. Epub 2006 Oct 9. [17064924 ]
  5. Boitz JM, Ullman B: Leishmania donovani singly deficient in HGPRT, APRT or XPRT are viable in vitro and within mammalian macrophages. Mol Biochem Parasitol. 2006 Jul;148(1):24-30. Epub 2006 Mar 15. [16597468 ]
  6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
General Function:
Non-membrane spanning protein tyrosine phosphatase activity
Specific Function:
Acts on tyrosine phosphorylated proteins, low-MW aryl phosphates and natural and synthetic acyl phosphates. Isoform 3 does not possess phosphatase activity.
Gene Name:
ACP1
Uniprot ID:
P24666
Molecular Weight:
18042.315 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Wang S, Stauffacher CV, Van Etten RL: Structural and mechanistic basis for the activation of a low-molecular weight protein tyrosine phosphatase by adenine. Biochemistry. 2000 Feb 15;39(6):1234-42. [10684601 ]
  4. Magherini F, Gamberi T, Paoli P, Marchetta M, Biagini M, Raugei G, Camici G, Ramponi G, Modesti A: The in vivo tyrosine phosphorylation level of yeast immunophilin Fpr3 is influenced by the LMW-PTP Ltp1. Biochem Biophys Res Commun. 2004 Aug 20;321(2):424-31. [15358193 ]
  5. Ostanin K, Pokalsky C, Wang S, Van Etten RL: Cloning and characterization of a Saccharomyces cerevisiae gene encoding the low molecular weight protein-tyrosine phosphatase. J Biol Chem. 1995 Aug 4;270(31):18491-9. [7629177 ]
  6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
4. DNA
General Function:
Used for biological information storage.
Specific Function:
DNA contains the instructions needed for an organism to develop, survive and reproduce.
Molecular Weight:
2.15 x 1012 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Simon R, Heithoff DM, Mahan MJ, Samuel CE: Comparison of tissue-selective proinflammatory gene induction in mice infected with wild-type, DNA adenine methylase-deficient, and flagellin-deficient Salmonella enterica. Infect Immun. 2007 Dec;75(12):5627-39. Epub 2007 Sep 24. [17893133 ]
  4. Ichida H, Maeda K, Ichise H, Matsuyama T, Abe T, Yoneyama K, Koba T: In silico restriction landmark genome scanning analysis of Xanthomonas oryzae pathovar oryzae MAFF 311018. Biochem Biophys Res Commun. 2007 Nov 23;363(3):852-6. Epub 2007 Sep 24. [17904519 ]
  5. Mamdouh W, Dong M, Kelly RE, Kantorovich LN, Besenbacher F: Coexistence of homochiral and heterochiral adenine domains at the liquid/solid interface. J Phys Chem B. 2007 Oct 25;111(42):12048-52. Epub 2007 Oct 5. [17918893 ]
General Function:
S-methyl-5-thioadenosine phosphorylase activity
Specific Function:
Catalyzes the reversible phosphorylation of S-methyl-5'-thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate. Involved in the breakdown of MTA, a major by-product of polyamine biosynthesis. Responsible for the first step in the methionine salvage pathway after MTA has been generated from S-adenosylmethionine. Has broad substrate specificity with 6-aminopurine nucleosides as preferred substrates.
Gene Name:
MTAP
Uniprot ID:
Q13126
Molecular Weight:
31235.76 Da
References
  1. Chow WA, Bedell V, Gaytan P, Borden E, Goldblum J, Hicks D, Slovak ML: Methylthioadenosine phosphorylase gene deletions are frequently detected by fluorescence in situ hybridization in conventional chondrosarcomas. Cancer Genet Cytogenet. 2006 Apr 15;166(2):95-100. [16631464 ]
  2. Chattopadhyay S, Zhao R, Tsai E, Schramm VL, Goldman ID: The effect of a novel transition state inhibitor of methylthioadenosine phosphorylase on pemetrexed activity. Mol Cancer Ther. 2006 Oct;5(10):2549-55. [17041099 ]
  3. Singh V, Schramm VL: Transition-state structure of human 5'-methylthioadenosine phosphorylase. J Am Chem Soc. 2006 Nov 15;128(45):14691-6. [17090056 ]
General Function:
Rna polymerase ii carboxy-terminal domain kinase activity
Specific Function:
Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition, and regulates G1 progress and G1-S transition via association with multiple interphase cyclins. Required in higher cells for entry into S-phase and mitosis. Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, LMNA, LMNB, LMNC, LBR, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, UL40/R2, RAB4A, RAP1GAP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SIRT2 and RUNX2. CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs. Essential for early stages of embryonic development. During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation. Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis. Inactivated by PKR/EIF2AK2- and WEE1-mediated phosphorylation upon DNA damage to stop cell cycle and genome replication at the G2 checkpoint thus facilitating DNA repair. Reactivated after successful DNA repair through WIP1-dependent signaling leading to CDC25A/B/C-mediated dephosphorylation and restoring cell cycle progression. In proliferating cells, CDK1-mediated FOXO1 phosphorylation at the G2-M phase represses FOXO1 interaction with 14-3-3 proteins and thereby promotes FOXO1 nuclear accumulation and transcription factor activity, leading to cell death of postmitotic neurons. The phosphorylation of beta-tubulins regulates microtubule dynamics during mitosis. NEDD1 phosphorylation promotes PLK1-mediated NEDD1 phosphorylation and subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation. In addition, CC2D1A phosphorylation regulates CC2D1A spindle pole localization and association with SCC1/RAD21 and centriole cohesion during mitosis. The phosphorylation of Bcl-xL/BCL2L1 after prolongated G2 arrest upon DNA damage triggers apoptosis. In contrast, CASP8 phosphorylation during mitosis prevents its activation by proteolysis and subsequent apoptosis. This phosphorylation occurs in cancer cell lines, as well as in primary breast tissues and lymphocytes. EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing. CALD1 phosphorylation promotes Schwann cell migration during peripheral nerve regeneration.
Gene Name:
CDK1
Uniprot ID:
P06493
Molecular Weight:
34095.14 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC50200 uMNot AvailableBindingDB 33218
References
  1. Havlicek L, Hanus J, Vesely J, Leclerc S, Meijer L, Shaw G, Strnad M: Cytokinin-derived cyclin-dependent kinase inhibitors: synthesis and cdc2 inhibitory activity of olomoucine and related compounds. J Med Chem. 1997 Feb 14;40(4):408-12. [9046330 ]
General Function:
Utp binding
Specific Function:
Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.
Gene Name:
HSP90AB1
Uniprot ID:
P08238
Molecular Weight:
83263.475 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC50>4000 uMNot AvailableBindingDB 33218
References
  1. Brough PA, Barril X, Borgognoni J, Chene P, Davies NG, Davis B, Drysdale MJ, Dymock B, Eccles SA, Garcia-Echeverria C, Fromont C, Hayes A, Hubbard RE, Jordan AM, Jensen MR, Massey A, Merrett A, Padfield A, Parsons R, Radimerski T, Raynaud FI, Robertson A, Roughley SD, Schoepfer J, Simmonite H, Sharp SY, Surgenor A, Valenti M, Walls S, Webb P, Wood M, Workman P, Wright L: Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem. 2009 Aug 13;52(15):4794-809. doi: 10.1021/jm900357y. [19610616 ]
General Function:
Protein serine/threonine kinase activity
Specific Function:
Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression. This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression. Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation. Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28. Can mediate hepatitis B virus (HBV) core protein phosphorylation. Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles.
Gene Name:
SRPK2
Uniprot ID:
P78362
Molecular Weight:
77525.955 Da
References
  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
General Function:
Xanthine oxidase activity
Specific Function:
Key enzyme in purine degradation. Catalyzes the oxidation of hypoxanthine to xanthine. Catalyzes the oxidation of xanthine to uric acid. Contributes to the generation of reactive oxygen species. Has also low oxidase activity towards aldehydes (in vitro).
Gene Name:
XDH
Uniprot ID:
P47989
Molecular Weight:
146422.99 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC5010.89 uMNot AvailableBindingDB 33218
References
  1. Hsieh JF, Wu SH, Yang YL, Choong KF, Chen ST: The screening and characterization of 6-aminopurine-based xanthine oxidase inhibitors. Bioorg Med Chem. 2007 May 15;15(10):3450-6. Epub 2007 Mar 12. [17379526 ]
General Function:
Not Available
Specific Function:
Not Available
Gene Name:
PECR
Uniprot ID:
Q9BY49
Molecular Weight:
32544.11 Da