You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2014-09-05 17:12:25 UTC
Update Date2014-12-24 20:26:53 UTC
Accession NumberT3D4599
Identification
Common NameMyristic acid
ClassSmall Molecule
DescriptionMyristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia).
Compound Type
  • Animal Toxin
  • Cosmetic Toxin
  • Food Toxin
  • Household Toxin
  • Metabolite
  • Natural Compound
  • Organic Compound
  • Plant Toxin
Chemical Structure
Thumb
Synonyms
Synonym
1-Tridecanecarboxylate
1-Tridecanecarboxylic acid
Crodacid
Myristate
Myristic acid pure
Myristoate
Myristoic acid
N-Tetradecan-1-oate
N-Tetradecan-1-oic acid
N-Tetradecanoate
N-Tetradecanoic acid
Tetradecanoate
Tetradecanoic (Myristic) acid
Tetradecanoic acid
Chemical FormulaC14H28O2
Average Molecular Mass228.371 g/mol
Monoisotopic Mass228.209 g/mol
CAS Registry Number544-63-8
IUPAC Nametetradecanoic acid
Traditional Namemyristic acid
SMILESCCCCCCCCCCCCCC(O)=O
InChI IdentifierInChI=1S/C14H28O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14(15)16/h2-13H2,1H3,(H,15,16)
InChI KeyInChIKey=TUNFSRHWOTWDNC-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acids and conjugates
Direct ParentLong-chain fatty acids
Alternative Parents
Substituents
  • Long-chain fatty acid
  • Straight chain fatty acid
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginEndogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
Biofluid LocationsNot Available
Tissue Locations
  • Adipose Tissue
  • Epidermis
  • Prostate
  • Spleen
PathwaysNot Available
ApplicationsNot Available
Biological Roles
Chemical Roles
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point53.9 °C
Boiling PointNot Available
Solubility0.00107 mg/mL
LogP6.11
Predicted Properties
PropertyValueSource
Water Solubility0.0017 g/LALOGPS
logP6.1ALOGPS
logP5.37ChemAxon
logS-5.1ALOGPS
pKa (Strongest Acidic)4.95ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area37.3 ŲChemAxon
Rotatable Bond Count12ChemAxon
Refractivity67.88 m³·mol⁻¹ChemAxon
Polarizability30.1 ųChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - GC-MS (1 TMS)splash10-017i-2910000000-66b35fb8449ba9de9cd6JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-017i-2910000000-66b35fb8449ba9de9cd6JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0159-0910000000-f45703c464ca75f98f26JSpectraViewer | MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0006-9700000000-ec8d81e37bc3b8531c99JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-0079-9330000000-5ec01705dfacc992be28JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Negative (Annotated)splash10-004i-0090000000-73ac1cfb8731e6318cc5JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Negative (Annotated)splash10-004i-1090000000-3aa768974da0ea81c1c9JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-004i-0090000000-22cd107a87b9acf058c5JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-004i-0090000000-2f7bb32e4b42206d851dJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-004i-2090000000-d45cffc15e2efbd45cd6JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-001i-9200000000-dbca68238dfebab35251JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-004r-9000000000-26827be8f8c2a4fbfd75JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 30V, Negativesplash10-0006-0090000000-110165b889d231d09d59JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 10V, Negativesplash10-0006-0090000000-110165b889d231d09d59JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 20V, Negativesplash10-0006-0090000000-110165b889d231d09d59JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF , Negativesplash10-0006-0090000000-110165b889d231d09d59JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 30V, Negativesplash10-004i-0090000000-91f4f874b25705464fb0JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 10V, Negativesplash10-004i-0090000000-15225a799e0a0bcff7c7JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03di-0290000000-b88426a2003ceec57e30JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-01q9-5940000000-6c73dc0032502abe4fc4JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-052f-9300000000-bde9bfcd2889066fc853JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03di-0290000000-b88426a2003ceec57e30JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-01q9-5940000000-6c73dc0032502abe4fc4JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-052f-9300000000-bde9bfcd2889066fc853JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-004i-0190000000-a32f141c7b5af0bc4de1JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-057i-1490000000-14bfb0d0344d7cf63443JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9400000000-512abb1322963024336fJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-004i-0190000000-a32f141c7b5af0bc4de1JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-057i-1490000000-14bfb0d0344d7cf63443JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9400000000-512abb1322963024336fJSpectraViewer
MSMass Spectrum (Electron Ionization)splash10-06xx-9200000000-4fdd41f0461ff5186901JSpectraViewer | MoNA
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
1D NMR13C NMR SpectrumNot AvailableJSpectraViewer
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
1D NMR13C NMR SpectrumNot AvailableJSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableJSpectraViewer
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityNot Available
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesThis is an endogenously produced metabolite found in the human body. It is used in metabolic reactions, catabolic reactions or waste generation.
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDHMDB00806
PubChem Compound ID11005
ChEMBL IDCHEMBL111077
ChemSpider ID10539
KEGG IDC06424
UniProt IDNot Available
OMIM ID
ChEBI ID28875
BioCyc IDNot Available
CTD IDNot Available
Stitch IDNot Available
PDB IDMYR
ACToR IDNot Available
Wikipedia LinkMyristic acid
References
Synthesis ReferenceGreaves, W. S.; Linstead, R. P.; Shephard, B. R.; Thomas, S. L. S.; Weedon, B. C. L. Anodic syntheses. I. New syntheses of stearic, myristic, and other acids. Journal of the Chemical Society (1950), 3326-30.
MSDSLink
General References
  1. Dabadie H, Peuchant E, Bernard M, LeRuyet P, Mendy F: Moderate intake of myristic acid in sn-2 position has beneficial lipidic effects and enhances DHA of cholesteryl esters in an interventional study. J Nutr Biochem. 2005 Jun;16(6):375-82. [15936650 ]
  2. Majeti BK, Karmali PP, Madhavendra SS, Chaudhuri A: Example of fatty acid-loaded lipoplex in enhancing in vitro gene transfer efficacies of cationic amphiphile. Bioconjug Chem. 2005 May-Jun;16(3):676-84. [15898737 ]
  3. Schewe T, Hiebsch C: [Action of respiratory inhibitors on the electron transport system of Escherichia coli]. Acta Biol Med Ger. 1977;36(7-8):961-6. [347849 ]
  4. Ohdoi C, Nyhan WL, Kuhara T: Chemical diagnosis of Lesch-Nyhan syndrome using gas chromatography-mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 15;792(1):123-30. [12829005 ]
  5. Curry S, Brick P, Franks NP: Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim Biophys Acta. 1999 Nov 23;1441(2-3):131-40. [10570241 ]
  6. Kageura M, Hara K, Hieda Y, Takamoto M, Fujiwara Y, Fukuma Y, Kashimura S: [Screening of drugs and chemicals by wide-bore capillary gas chromatography with flame ionization and nitrogen phosphorus detectors]. Nihon Hoigaku Zasshi. 1989 Apr;43(2):161-5. [2810891 ]
  7. Zhu W, Smart EJ: Myristic acid stimulates endothelial nitric-oxide synthase in a CD36- and an AMP kinase-dependent manner. J Biol Chem. 2005 Aug 19;280(33):29543-50. Epub 2005 Jun 21. [15970594 ]
  8. Bhattacharya A, Ghosal SK: Permeation kinetics of ketotifen fumarate alone and in combination with hydrophobic permeation enhancers through human cadaver epidermis. Boll Chim Farm. 2000 Jul-Aug;139(4):177-81. [11059101 ]
  9. Matsubara M: [Structures and molecular recognition of MARCKS family proteins]. Seikagaku. 2005 Jan;77(1):50-5. [15770953 ]
  10. Kaminskas A, Zieden B, Elving B, Kristenson M, Abaravicius A, Bergdahl B, Olsson AG, Kucinskiene Z: Adipose tissue fatty acids in men from two populations with different cardiovascular risk: the LiVicordia study. Scand J Clin Lab Invest. 1999 May;59(3):227-32. [10400167 ]
  11. Hoffmann GF, Meier-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL: Physiology and pathophysiology of organic acids in cerebrospinal fluid. J Inherit Metab Dis. 1993;16(4):648-69. [8412012 ]
  12. Brod SA, Malone M, Darcan S, Papolla M, Nelson L: Ingested interferon alpha suppresses type I diabetes in non-obese diabetic mice. Diabetologia. 1998 Oct;41(10):1227-32. [9794112 ]
  13. Pieterse Z, Jerling JC, Oosthuizen W, Kruger HS, Hanekom SM, Smuts CM, Schutte AE: Substitution of high monounsaturated fatty acid avocado for mixed dietary fats during an energy-restricted diet: effects on weight loss, serum lipids, fibrinogen, and vascular function. Nutrition. 2005 Jan;21(1):67-75. [15661480 ]
  14. Cater NB, Denke MA: Behenic acid is a cholesterol-raising saturated fatty acid in humans. Am J Clin Nutr. 2001 Jan;73(1):41-4. [11124748 ]
  15. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [19212411 ]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Protein kinase binding
Specific Function:
Microtubule-associated force-producing protein involved in producing microtubule bundles and able to bind and hydrolyze GTP. Most probably involved in vesicular trafficking processes. Involved in receptor-mediated endocytosis.
Gene Name:
DNM1
Uniprot ID:
Q05193
Molecular Weight:
97407.455 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC50>100 uMNot AvailableBindingDB 50147581
References
  1. Hill TA, Odell LR, Quan A, Abagyan R, Ferguson G, Robinson PJ, McCluskey A: Long chain amines and long chain ammonium salts as novel inhibitors of dynamin GTPase activity. Bioorg Med Chem Lett. 2004 Jun 21;14(12):3275-8. [15149689 ]
General Function:
Zinc ion binding
Specific Function:
Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2.
Gene Name:
PPARA
Uniprot ID:
Q07869
Molecular Weight:
52224.595 Da
References
  1. Murakami K, Ide T, Suzuki M, Mochizuki T, Kadowaki T: Evidence for direct binding of fatty acids and eicosanoids to human peroxisome proliferators-activated receptor alpha. Biochem Biophys Res Commun. 1999 Jul 14;260(3):609-13. [10403814 ]
General Function:
Triacyl lipopeptide binding
Specific Function:
Cooperates with LY96 to mediate the innate immune response to bacterial lipoproteins and other microbial cell wall components. Cooperates with TLR1 or TLR6 to mediate the innate immune response to bacterial lipoproteins or lipopeptides (PubMed:17889651). Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response. May also promote apoptosis in response to lipoproteins (PubMed:10426996). Recognizes mycoplasmal macrophage-activating lipopeptide-2kD (MALP-2), soluble tuberculosis factor (STF), phenol-soluble modulin (PSM) and B.burgdorferi outer surface protein A lipoprotein (OspA-L) cooperatively with TLR6 (PubMed:11441107). Acts as a receptor for M.tuberculosis lipoproteins LprA, LprG, LpqH and PhoS1 (pstS1), some lipoproteins are dependent on other coreceptors (TLR1, CD14 and/or CD36).The lipoproteins act as agonists to modulate antigen presenting cell functions in response to the pathogen (PubMed:19362712). Forms activation clusters composed of several receptors depending on the ligand, these clusters trigger signaling from the cell surface and subsequently are targeted to the Golgi in a lipid-raft dependent pathway. Forms the cluster TLR2:TLR6:CD14:CD36 in response to diacylated lipopeptides and TLR2:TLR1:CD14 in response to triacylated lipopeptides (PubMed:16880211).
Gene Name:
TLR2
Uniprot ID:
O60603
Molecular Weight:
89836.575 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC505 uMNot AvailableBindingDB 50147581
References
  1. Seyberth T, Voss S, Brock R, Wiesmuller KH, Jung G: Lipolanthionine peptides act as inhibitors of TLR2-mediated IL-8 secretion. Synthesis and structure-activity relationships. J Med Chem. 2006 Mar 9;49(5):1754-65. [16509590 ]