You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2014-08-29 06:35:06 UTC
Update Date2014-12-24 20:26:47 UTC
Accession NumberT3D4364
Identification
Common NameL-Isoleucine
ClassSmall Molecule
DescriptionL-Isoleucine is one of the essential amino acids that cannot be made by the body and is known for its ability to help endurance and assist in the repair and rebuilding of muscle. This amino acid is important to body builders as it helps boost energy and helps the body recover from training. L-Isoleucine is also classified as a branched-chain amino acid (BCAA). It helps promote muscle recovery after exercise. Isoleucine is actually broken down for energy within the muscle tissue. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels.
Compound Type
  • Amine
  • Amino Acid, Essential
  • Animal Toxin
  • Dietary Supplement
  • Drug
  • Food Toxin
  • Household Toxin
  • Metabolite
  • Micronutrient
  • Natural Compound
  • Nutraceutical
  • Organic Compound
  • Supplement
Chemical Structure
Thumb
Synonyms
Synonym
(2S,3S)-2-amino-3-methyl-Pentanoate
(2S,3S)-2-amino-3-methyl-Pentanoic acid
(2S,3S)-2-Amino-3-methylpentanoate
(2S,3S)-2-Amino-3-methylpentanoic acid
(2S,3S)-a-Amino-b-methyl-N-valerate
(2S,3S)-a-Amino-b-methyl-N-valeric acid
(2S,3S)-a-Amino-b-methylvalerate
(2S,3S)-a-Amino-b-methylvaleric acid
(2S,3S)-alph-Amino-beta-methylvalerate
(2S,3S)-alph-Amino-beta-methylvaleric acid
(2S,3S)-alpha-Amino-beta-merthyl-N-valerate
(2S,3S)-alpha-Amino-beta-merthyl-N-valeric acid
(2S,3S)-alpha-Amino-beta-merthylvalerate
(2S,3S)-alpha-Amino-beta-merthylvaleric acid
(2S,3S)-alpha-Amino-beta-methyl-N-valerate
(2S,3S)-alpha-Amino-beta-methyl-N-valeric acid
(2S,3S)-alpha-Amino-beta-methylvalerate
(2S,3S)-alpha-Amino-beta-methylvaleric acid
(S)-Isoleucine
(S,S)-Isoleucine
2-Amino-3-methylpentanoate
2-Amino-3-methylpentanoic acid
2-Amino-3-methylvalerate
2-Amino-3-methylvaleric acid
2S,3S-Isoleucine
alpha-amino-beta-methylvaleric acid
Erythro-L-Isoleucine
I
Ile
Iso-leucine
Isoleucine
L-(+)-Isoleucine
L-Ile
[S-(R*,R*)]-2-Amino-3-methylpentanoate
[S-(R*,R*)]-2-Amino-3-methylpentanoic acid
α-amino-β-methylvaleric acid
Chemical FormulaC6H13NO2
Average Molecular Mass131.173 g/mol
Monoisotopic Mass131.095 g/mol
CAS Registry Number73-32-5
IUPAC Name(2S,3S)-2-amino-3-methylpentanoic acid
Traditional NameL-isoleucine
SMILES[H][C@](C)(CC)[C@]([H])(N)C(O)=O
InChI IdentifierInChI=1S/C6H13NO2/c1-3-4(2)5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/t4-,5-/m0/s1
InChI KeyInChIKey=AGPKZVBTJJNPAG-WHFBIAKZSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as isoleucine and derivatives. Isoleucine and derivatives are compounds containing isoleucine or a derivative thereof resulting from reaction of isoleucine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentIsoleucine and derivatives
Alternative Parents
Substituents
  • Isoleucine or derivatives
  • Alpha-amino acid
  • L-alpha-amino acid
  • Branched fatty acid
  • Methyl-branched fatty acid
  • Fatty acid
  • Fatty acyl
  • Amino acid
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Organic oxide
  • Organopnictogen compound
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Primary aliphatic amine
  • Carbonyl group
  • Organic oxygen compound
  • Amine
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginEndogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Mitochondria
Biofluid LocationsNot Available
Tissue Locations
  • All Tissues
  • Prostate
Pathways
NameSMPDB LinkKEGG Link
Transcription/TranslationSMP00019 Not Available
Valine, Leucine and Isoleucine DegradationSMP00032 map00280
Hartnup DisorderSMP00189 Not Available
ApplicationsNot Available
Biological Roles
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point285.5 dec°C
Boiling PointNot Available
Solubility3.44E+004 mg/L (at 25°C)
LogP-1.7
Predicted Properties
PropertyValueSource
Water Solubility114 g/LALOGPS
logP-1.7ALOGPS
logP-1.5ChemAxon
logS-0.06ALOGPS
pKa (Strongest Acidic)2.79ChemAxon
pKa (Strongest Basic)9.59ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area63.32 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity34.09 m³·mol⁻¹ChemAxon
Polarizability14.11 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-0a4i-0930000000-e78f845bb2a8d4736476JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-0a4i-0910000000-de9162d149073d0e2a37JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-0a4i-0920000000-599e61f8ccdb6525c7a9JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-0a4i-0910000000-742e44c426c0d6c2a9acJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-05fr-8910000000-dbb33e0f02ac2ca5feddJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0a4i-0920000000-37690f426455ac41e2c2JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0a4i-0930000000-e78f845bb2a8d4736476JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0a4i-0910000000-de9162d149073d0e2a37JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0a4i-0920000000-599e61f8ccdb6525c7a9JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0a4i-0910000000-742e44c426c0d6c2a9acJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-QQ (Non-derivatized)splash10-0udi-2392000000-74cca1eb265b8e3d7f43JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-05fr-8910000000-dbb33e0f02ac2ca5feddJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-000i-9100000000-27891dff695c5db53796JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0a4i-0910000000-43ec1890f6dbd6aea657JSpectraViewer | MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-00b9-9100000000-40bc9ef43da5f18be883JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-000i-9200000000-ae8694c0f3e4dcc608f9JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-000i-9300000000-8a23b3e62231eb65f80fJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-00ko-9000000000-ac7e71578d7e1d0e8ce9JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-052f-9000000000-2586d4a089921dd977edJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-5b11521ff6a631376d2bJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-3c352f229e4067fcd489JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-8a7ef48fc0c1b6f845c2JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0002-0920000000-2e11aa1c7a5defc386dbJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-b63ac9cf06eda4c54a81JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-e5b0c8c6b09f541d6dbfJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-d89d16d5c2242e44ec63JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-5de583142c7bdb381c8fJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-001i-0900000000-8c75bde35c4a4073ee65JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-001i-0900000000-233a9862f616afea2d17JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-001i-1900000000-375f35065b82b13e6d6eJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-00dl-9000000000-d0d4a9f90fe2aca74483JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-0006-9000000000-0018f47571feaf232ff8JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-001r-7900000000-278dc67396114be331baJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-000i-9000000000-e26c042aa6231eeca071JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-014r-9000000000-b6c1752fd3fbccb3d1c5JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-05mo-9000000000-0569c3162621252ed0a8JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-052f-9000000000-3d52b5d56d3fab45276eJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - CE-ESI-TOF (CE-system connected to 6210 Time-of-Flight MS, Agilent) , Positivesplash10-001i-0900000000-720554d58264a9cfdb67JSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0019-9500000000-00268b2694cde281641bJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-9000000000-4014793e17e0290790a4JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a4i-9000000000-eb9a97a14461e524e76eJSpectraViewer
MSMass Spectrum (Electron Ionization)splash10-004r-9000000000-34d4d4cb7042da231eb4JSpectraViewer | MoNA
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
1D NMR13C NMR SpectrumNot AvailableJSpectraViewer
1D NMR13C NMR SpectrumNot AvailableJSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableJSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableJSpectraViewer
Toxicity Profile
Route of ExposureAbsorbed from the small intestine by a sodium-dependent active-transport process
Mechanism of Toxicity(Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological problems are due to poor formation of myelin in the CNS.
MetabolismHepatic
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesThe branched-chain amino acids may have antihepatic encephalopathy activity in some. They may also have anticatabolic and antitardive dyskinesia activity.
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsSymptoms of hypoglycemia
TreatmentNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDDB00167
HMDB IDHMDB00172
PubChem Compound ID6306
ChEMBL IDCHEMBL1233584
ChemSpider ID6067
KEGG IDC00407
UniProt IDNot Available
OMIM ID
ChEBI ID17191
BioCyc IDILE
CTD IDNot Available
Stitch IDNot Available
PDB IDILE
ACToR IDNot Available
Wikipedia LinkIle
References
Synthesis Reference

Nelli I. Zhdanova, Tatyana V. Leonova, Ljudmila F. Kozyreva, “Method of producing L-isoleucine using Brevibacterium flavum.” U.S. Patent US4237228, issued February, 1962.

MSDSLink
General References
  1. Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [15911239 ]
  2. Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6. [12297216 ]
  3. He XY, Yang SY: Roles of type 10 17beta-hydroxysteroid dehydrogenase in intracrinology and metabolism of isoleucine and fatty acids. Endocr Metab Immune Disord Drug Targets. 2006 Mar;6(1):95-102. [16611167 ]
  4. Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [14992292 ]
  5. Vaalasti A, Suomalainen H, Kuokkanen K, Rechardt L: Neuropeptides in cutaneous neurofibromas of von Recklinghausen's disease. J Cutan Pathol. 1990 Dec;17(6):371-3. [1981573 ]
  6. Eriste E, Norberg A, Bonetto V, Nepomuceno D, Lovenberg TW, Sillard R, Jornvall H: A C-terminally elongated form of PHI from porcine intestine. Cell Mol Life Sci. 1999 Nov 15;56(7-8):709-13. [11212317 ]
  7. Jalan R, Olde Damink SW, Lui HF, Glabus M, Deutz NE, Hayes PC, Ebmeier K: Oral amino acid load mimicking hemoglobin results in reduced regional cerebral perfusion and deterioration in memory tests in patients with cirrhosis of the liver. Metab Brain Dis. 2003 Mar;18(1):37-49. [12603081 ]
  8. Hervieu G, Segretain D, Nahon JL: Developmental and stage-dependent expression of melanin-concentrating hormone in mammalian germ cells. Biol Reprod. 1996 Jun;54(6):1161-72. [8724342 ]
  9. Suk FM, Lin MH, Newman M, Pan S, Chen SH, Liu JD, Shih C: Replication advantage and host factor-independent phenotypes attributable to a common naturally occurring capsid mutation (I97L) in human hepatitis B virus. J Virol. 2002 Dec;76(23):12069-77. [12414948 ]
  10. Silwood CJ, Lynch E, Claxson AW, Grootveld MC: 1H and (13)C NMR spectroscopic analysis of human saliva. J Dent Res. 2002 Jun;81(6):422-7. [12097436 ]
  11. De Miranda J, Panizzutti R, Foltyn VN, Wolosker H: Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14542-7. Epub 2002 Oct 22. [12393813 ]
  12. Nicholson JK, O'Flynn MP, Sadler PJ, Macleod AF, Juul SM, Sonksen PH: Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J. 1984 Jan 15;217(2):365-75. [6696735 ]
  13. Blomstrand E, Eliasson J, Karlsson HK, Kohnke R: Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006 Jan;136(1 Suppl):269S-73S. [16365096 ]
  14. Engelborghs S, Marescau B, De Deyn PP: Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease. Neurochem Res. 2003 Aug;28(8):1145-50. [12834252 ]
  15. Sato T, Shimada Y, Nagasawa N, Nakanishi S, Jingami H: Amino acid mutagenesis of the ligand binding site and the dimer interface of the metabotropic glutamate receptor 1. Identification of crucial residues for setting the activated state. J Biol Chem. 2003 Feb 7;278(6):4314-21. Epub 2002 Nov 19. [12444084 ]
  16. Edvinsson L: Innervation and effects of dilatory neuropeptides on cerebral vessels. New aspects. Blood Vessels. 1991;28(1-3):35-45. [2001478 ]
  17. Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7. [6198473 ]
  18. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [19212411 ]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
L-valine transaminase activity
Specific Function:
Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine.
Gene Name:
BCAT1
Uniprot ID:
P54687
Molecular Weight:
42965.815 Da
References
  1. Goto M, Miyahara I, Hayashi H, Kagamiyama H, Hirotsu K: Crystal structures of branched-chain amino acid aminotransferase complexed with glutamate and glutarate: true reaction intermediate and double substrate recognition of the enzyme. Biochemistry. 2003 Apr 8;42(13):3725-33. [12667063 ]
  2. Chen CD, Huang TF, Lin CH, Guan HH, Hsieh YC, Lin YH, Huang YC, Liu MY, Chang WC, Chen CJ: Purification, crystallization and preliminary X-ray crystallographic analysis of branched-chain aminotransferase from Deinococcus radiodurans. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Jun 1;63(Pt 6):492-4. Epub 2007 May 5. [17554170 ]
  3. Beck HC: Branched-chain fatty acid biosynthesis in a branched-chain amino acid aminotransferase mutant of Staphylococcus carnosus. FEMS Microbiol Lett. 2005 Feb 1;243(1):37-44. [15667998 ]
  4. Thage BV, Rattray FP, Laustsen MW, Ardo Y, Barkholt V, Houlberg U: Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp. paracasei CHCC 2115. J Appl Microbiol. 2004;96(3):593-602. [14962140 ]
  5. Madsen SM, Beck HC, Ravn P, Vrang A, Hansen AM, Israelsen H: Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme. Appl Environ Microbiol. 2002 Aug;68(8):4007-14. [12147502 ]
General Function:
Isoleucine-trna ligase activity
Specific Function:
Not Available
Gene Name:
IARS
Uniprot ID:
P41252
Molecular Weight:
144496.915 Da
References
  1. Crasto CF, Forrest AK, Karoli T, March DR, Mensah L, O'Hanlon PJ, Nairn MR, Oldham MD, Yue W, Banwell MG, Easton CJ: Synthesis and activity of analogues of the isoleucyl tRNA synthetase inhibitor SB-203207. Bioorg Med Chem. 2003 Jul 3;11(13):2687-94. [12788342 ]
  2. Wang P, Tang Y, Tirrell DA: Incorporation of trifluoroisoleucine into proteins in vivo. J Am Chem Soc. 2003 Jun 11;125(23):6900-6. [12783542 ]
  3. Mock ML, Michon T, van Hest JC, Tirrell DA: Stereoselective incorporation of an unsaturated isoleucine analogue into a protein expressed in E. coli. Chembiochem. 2006 Jan;7(1):83-7. [16397872 ]
  4. Fukunaga R, Fukai S, Ishitani R, Nureki O, Yokoyama S: Crystal structures of the CP1 domain from Thermus thermophilus isoleucyl-tRNA synthetase and its complex with L-valine. J Biol Chem. 2004 Feb 27;279(9):8396-402. Epub 2003 Dec 12. [14672940 ]
  5. Pezo V, Metzgar D, Hendrickson TL, Waas WF, Hazebrouck S, Doring V, Marliere P, Schimmel P, De Crecy-Lagard V: Artificially ambiguous genetic code confers growth yield advantage. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8593-7. Epub 2004 May 26. [15163798 ]
General Function:
Isoleucine-trna ligase activity
Specific Function:
Not Available
Gene Name:
IARS2
Uniprot ID:
Q9NSE4
Molecular Weight:
113790.565 Da
References
  1. Wang P, Tang Y, Tirrell DA: Incorporation of trifluoroisoleucine into proteins in vivo. J Am Chem Soc. 2003 Jun 11;125(23):6900-6. [12783542 ]
  2. Fukunaga R, Fukai S, Ishitani R, Nureki O, Yokoyama S: Crystal structures of the CP1 domain from Thermus thermophilus isoleucyl-tRNA synthetase and its complex with L-valine. J Biol Chem. 2004 Feb 27;279(9):8396-402. Epub 2003 Dec 12. [14672940 ]
  3. Zhu B, Zhao MW, Eriani G, Wang ED: A present-day aminoacyl-tRNA synthetase with ancestral editing properties. RNA. 2007 Jan;13(1):15-21. Epub 2006 Nov 9. [17095543 ]
  4. Fukunaga R, Yokoyama S: Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. J Mol Biol. 2005 Feb 11;346(1):57-71. Epub 2004 Dec 19. [15663927 ]
  5. Fukunaga R, Yokoyama S: Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase. J Mol Biol. 2006 Jun 16;359(4):901-12. Epub 2006 Apr 25. [16697013 ]
General Function:
Oxidoreductase activity, acting on the ch-ch group of donors, with a flavin as acceptor
Specific Function:
Has greatest activity toward short branched chain acyl-CoA derivative such as (s)-2-methylbutyryl-CoA, isobutyryl-CoA, and 2-methylhexanoyl-CoA as well as toward short straight chain acyl-CoAs such as butyryl-CoA and hexanoyl-CoA. Can use valproyl-CoA as substrate and may play a role in controlling the metabolic flux of valproic acid in the development of toxicity of this agent.
Gene Name:
ACADSB
Uniprot ID:
P45954
Molecular Weight:
47485.035 Da
References
  1. Korman SH, Andresen BS, Zeharia A, Gutman A, Boneh A, Pitt JJ: 2-ethylhydracrylic aciduria in short/branched-chain acyl-CoA dehydrogenase deficiency: application to diagnosis and implications for the R-pathway of isoleucine oxidation. Clin Chem. 2005 Mar;51(3):610-7. Epub 2004 Dec 22. [15615815 ]
  2. Madsen PP, Kibaek M, Roca X, Sachidanandam R, Krainer AR, Christensen E, Steiner RD, Gibson KM, Corydon TJ, Knudsen I, Wanders RJ, Ruiter JP, Gregersen N, Andresen BS: Short/branched-chain acyl-CoA dehydrogenase deficiency due to an IVS3+3A>G mutation that causes exon skipping. Hum Genet. 2006 Feb;118(6):680-90. Epub 2005 Nov 30. [16317551 ]
  3. Korman SH: Inborn errors of isoleucine degradation: a review. Mol Genet Metab. 2006 Dec;89(4):289-99. Epub 2006 Sep 6. [16950638 ]
General Function:
L-valine transaminase activity
Specific Function:
Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine. May also function as a transporter of branched chain alpha-keto acids.
Gene Name:
BCAT2
Uniprot ID:
O15382
Molecular Weight:
44287.445 Da
References
  1. Berger BJ, English S, Chan G, Knodel MH: Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. J Bacteriol. 2003 Apr;185(8):2418-31. [12670965 ]
General Function:
L-proline transmembrane transporter activity
Specific Function:
Neutral amino acid/proton symporter. Has a pH-dependent electrogenic transport activity for small amino acids such as glycine, alanine and proline. Besides small apolar L-amino acids, it also recognize their D-enantiomers and selected amino acid derivatives such as gamma-aminobutyric acid (By similarity).
Gene Name:
SLC36A1
Uniprot ID:
Q7Z2H8
Molecular Weight:
53075.045 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory37000 uMNot AvailableBindingDB 18140
References
  1. Thondorf I, Voigt V, Schafer S, Gebauer S, Zebisch K, Laug L, Brandsch M: Three-dimensional quantitative structure-activity relationship analyses of substrates of the human proton-coupled amino acid transporter 1 (hPAT1). Bioorg Med Chem. 2011 Nov 1;19(21):6409-18. doi: 10.1016/j.bmc.2011.08.058. Epub 2011 Sep 5. [21955456 ]