You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2014-10-02 18:59:38 UTC
Update Date2018-03-21 17:46:18 UTC
Accession NumberT3D4963
Identification
Common NameLithocholic acid
ClassSmall Molecule
DescriptionLithocholic acid, also known as 3α-hydroxy-5β-cholan-24-oic acid or LCA, is a secondary bile acid. It is formed from chenodeoxycholate by bacterial action, and is usually conjugated with glycine or taurine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as cholagogue and choleretic. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). When present in sufficiently high levels, lithocholic acid can act as an oncometabolite. An oncometabolite is a compound that when present at chronically high levels promotes tumour growth and survival. Chronically high levels of lithocholic acid are associated with several forms of cancer including colon cancer, pancreatic cancer, esophageal cancer, and many other GI cancers. High bile acid levels lead to the generation of reactive oxygen species and reactive nitrogen species, disruption of the cell membrane and mitochondria, induction of DNA damage, mutation and apoptosis, and the development of reduced apoptosis capability upon chronic exposure (PMID: 24884764). Dietary fibre can bind to lithocholic acid and aid in its excretion in stool. As such, fibre can protect against colon cancer.
Compound Type
  • Animal Toxin
  • Metabolite
  • Natural Compound
Chemical Structure
Thumb
Synonyms
Synonym
(3a,5b)-3-hydroxy-cholan-24-oate
(3a,5b)-3-hydroxy-cholan-24-oic acid
3a-Hydroxy-5b-cholan-24-oate
3a-Hydroxy-5b-cholan-24-oic acid
Lithocholate
Chemical FormulaC24H40O3
Average Molecular Mass376.573 g/mol
Monoisotopic Mass376.298 g/mol
CAS Registry Number434-13-9
IUPAC Name(4R)-4-[(2S,5R,14R,15R)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanoic acid
Traditional Name(4R)-4-[(2S,5R,14R,15R)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanoic acid
SMILESC[C@H](CCC(O)=O)[C@H]1CCC2C3CCC4C[C@H](O)CC[C@]4(C)C3CC[C@]12C
InChI IdentifierInChI=1S/C24H40O3/c1-15(4-9-22(26)27)19-7-8-20-18-6-5-16-14-17(25)10-12-23(16,2)21(18)11-13-24(19,20)3/h15-21,25H,4-14H2,1-3H3,(H,26,27)/t15-,16?,17-,18?,19-,20?,21?,23+,24-/m1/s1
InChI KeyInChIKey=SMEROWZSTRWXGI-HRFHTWGISA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as monohydroxy bile acids, alcohols and derivatives. These are bile acids, alcohols or any of their derivatives bearing a hydroxyl group.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSteroids and steroid derivatives
Sub ClassBile acids, alcohols and derivatives
Direct ParentMonohydroxy bile acids, alcohols and derivatives
Alternative Parents
Substituents
  • Monohydroxy bile acid, alcohol, or derivatives
  • 3-alpha-hydroxysteroid
  • Hydroxysteroid
  • 3-hydroxysteroid
  • Cyclic alcohol
  • Secondary alcohol
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External DescriptorsNot Available
Biological Properties
StatusDetected and Not Quantified
OriginNot Available
Cellular Locations
  • Extracellular
Biofluid LocationsNot Available
Tissue Locations
  • Intestine
  • Liver
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point186 °C
Boiling PointNot Available
Solubility0.000377 mg/mL
LogPNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.0005 g/LALOGPS
logP4.38ALOGPS
logP5.02ChemAxon
logS-5.9ALOGPS
pKa (Strongest Acidic)4.79ChemAxon
pKa (Strongest Basic)-1.4ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area57.53 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity107.68 m³·mol⁻¹ChemAxon
Polarizability45.92 ųChemAxon
Number of Rings4ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a6r-0009000000-f631439c42560b6112dcJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0bu3-0029000000-77d9dd354e5acfcbb059JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0002-1195000000-4e93d1691883a980ad09JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-004i-0009000000-bc8a31ce5625ab01cbf9JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-056r-1009000000-703fb777c311a25b0d15JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9006000000-6c71a6df88d4f84121d0JSpectraViewer
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityNot Available
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)Not listed by IARC.
Uses/SourcesNot Available
Minimum Risk LevelNot Available
Health EffectsChronically high levels of lithocholic acid are associated with several forms of cancer including colon cancer.
SymptomsNot Available
TreatmentNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDHMDB00761
PubChem Compound ID11740284
ChEMBL IDNot Available
ChemSpider ID9914991
KEGG IDC03990
UniProt IDNot Available
OMIM ID
ChEBI ID16325
BioCyc IDTAUROLITHOCHOLATE-SULFATE
CTD IDD008095
Stitch IDNot Available
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDST3D4963.pdf
General References
  1. Greco AV, Mingrone G: Serum bile acid concentrations in mild liver cirrhosis. Clin Chim Acta. 1993 Nov 30;221(1-2):183-9. [8149635 ]
  2. Kitahara M, Sakata S, Sakamoto M, Benno Y: Comparison among fecal secondary bile acid levels, fecal microbiota and Clostridium scindens cell numbers in Japanese. Microbiol Immunol. 2004;48(5):367-75. [15215624 ]
  3. Dew MJ, van Berge Henegouwen GP, Huybregts AW, Allan RN: Hepatotoxic effect of bile acids in inflammatory bowel disease. Gastroenterology. 1980 Jun;78(6):1393-401. [7372059 ]
  4. Ceryak S, Bouscarel B, Fromm H: Comparative binding of bile acids to serum lipoproteins and albumin. J Lipid Res. 1993 Oct;34(10):1661-74. [8245717 ]
  5. Eklund A, Norlander A, Norman A: Bile acid synthesis and excretion following release of total extrahepatic cholestasis by percutaneous transhepatic drainage. Eur J Clin Invest. 1980 Oct;10(5):349-55. [6777167 ]
  6. Balistreri WF, Suchy FJ, Farrell MK, Heubi JE: Pathologic versus physiologic cholestasis: elevated serum concentration of a secondary bile acid in the presence of hepatobiliary disease. J Pediatr. 1981 Mar;98(3):399-402. [7205448 ]
  7. Deleze G, Paumgartner G, Karlaganis G, Giger W, Reinhard M, Sidiropoulos D: Bile acid pattern in human amniotic fluid. Eur J Clin Invest. 1978 Feb;8(1):41-5. [417931 ]
  8. Beher WT, Gabbard A, Norum RA, Stradnieks S: Effect of blood high density lipoprotein cholesterol concentration on fecal steroid excretion in humans. Life Sci. 1983 Jun 27;32(26):2933-7. [6865641 ]
  9. Fouin-Fortunet H, Le Quernec L, Erlinger S, Lerebours E, Colin R: Hepatic alterations during total parenteral nutrition in patients with inflammatory bowel disease: a possible consequence of lithocholate toxicity. Gastroenterology. 1982 May;82(5 Pt 1):932-7. [6800873 ]
  10. Rudi J, Schonig T, Stremmel W: -Therapy with ursodeoxycholic acid in primary biliary cirrhosis in pregnancy-. Z Gastroenterol. 1996 Mar;34(3):188-91. [8650973 ]
  11. Hofmann AF: [Enterohepatic circulation of bile acids and biliary lipid secretion]. Minerva Med. 1977 Sep 19;68(43):3011-7. [409965 ]
  12. Stadler J, Yeung KS, Furrer R, Marcon N, Himal HS, Bruce WR: Proliferative activity of rectal mucosa and soluble fecal bile acids in patients with normal colons and in patients with colonic polyps or cancer. Cancer Lett. 1988 Jan;38(3):315-20. [3349450 ]
  13. Tadano T, Kanoh M, Matsumoto M, Sakamoto K, Kamano T: Studies of serum and feces bile acids determination by gas chromatography-mass spectrometry. Rinsho Byori. 2006 Feb;54(2):103-10. [16548228 ]
  14. Loof L, Wengle B: Enzymatic sulphation of bile salts in human liver. Biochim Biophys Acta. 1978 Sep 28;530(3):451-60. [698243 ]
  15. Salen G, Tint GS, Eliav B, Deering N, Mosbach EH: Increased formation of ursodeoxycholic acid in patients treated with chenodeoxycholic acid. J Clin Invest. 1974 Feb;53(2):612-21. [11344576 ]
  16. Tinker LF, Schneeman BO, Davis PA, Gallaher DD, Waggoner CR: Consumption of prunes as a source of dietary fiber in men with mild hypercholesterolemia. Am J Clin Nutr. 1991 May;53(5):1259-65. [1850578 ]
  17. Farrell GC, Duddy SK, Kass GE, Llopis J, Gahm A, Orrenius S: Release of Ca2+ from the endoplasmic reticulum is not the mechanism for bile acid-induced cholestasis and hepatotoxicity in the intact rat liver. J Clin Invest. 1990 Apr;85(4):1255-9. [2318979 ]
  18. St-Pierre MV, Kullak-Ublick GA, Hagenbuch B, Meier PJ: Transport of bile acids in hepatic and non-hepatic tissues. J Exp Biol. 2001 May;204(Pt 10):1673-86. [11316487 ]
  19. Claudel T, Staels B, Kuipers F: The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol. 2005 Oct;25(10):2020-30. Epub 2005 Jul 21. [16037564 ]
  20. Chiang JY: Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors. Am J Physiol Gastrointest Liver Physiol. 2003 Mar;284(3):G349-56. [12576301 ]
  21. Davis RA, Miyake JH, Hui TY, Spann NJ: Regulation of cholesterol-7alpha-hydroxylase: BAREly missing a SHP. J Lipid Res. 2002 Apr;43(4):533-43. [11907135 ]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase activity
Specific Function:
Works in concert with the 5-alpha/5-beta-steroid reductases to convert steroid hormones into the 3-alpha/5-alpha and 3-alpha/5-beta-tetrahydrosteroids. Catalyzes the inactivation of the most potent androgen 5-alpha-dihydrotestosterone (5-alpha-DHT) to 5-alpha-androstane-3-alpha,17-beta-diol (3-alpha-diol). Has a high bile-binding ability.
Gene Name:
AKR1C2
Uniprot ID:
P52895
Molecular Weight:
36734.97 Da
References
  1. Stolz A, Hammond L, Lou H, Takikawa H, Ronk M, Shively JE: cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. J Biol Chem. 1993 May 15;268(14):10448-57. [8486699 ]
General Function:
Zinc ion binding
Specific Function:
Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Transcription factor activity is modulated by bound coactivator and corepressor proteins. Transcription activation is down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3.
Gene Name:
AR
Uniprot ID:
P10275
Molecular Weight:
98987.9 Da
References
  1. Berta L, Fronticelli Baldelli C, Fazzari A, Radice E, Bargoni A, Frairia R, Gaetini A: Sex steroid receptors, secondary bile acids and colorectal cancer. A possible mechanism of interaction. Panminerva Med. 2003 Dec;45(4):261-6. [15206167 ]
General Function:
Zinc ion binding
Specific Function:
Ligand-activated transcription factor. Receptor for bile acids such as chenodeoxycholic acid, lithocholic acid and deoxycholic acid. Represses the transcription of the cholesterol 7-alpha-hydroxylase gene (CYP7A1) through the induction of NR0B2 or FGF19 expression, via two distinct mechanisms. Activates the intestinal bile acid-binding protein (IBABP). Activates the transcription of bile salt export pump ABCB11 by directly recruiting histone methyltransferase CARM1 to this locus.
Gene Name:
NR1H4
Uniprot ID:
Q96RI1
Molecular Weight:
55913.915 Da
References
  1. Katona BW, Cummins CL, Ferguson AD, Li T, Schmidt DR, Mangelsdorf DJ, Covey DF: Synthesis, characterization, and receptor interaction profiles of enantiomeric bile acids. J Med Chem. 2007 Nov 29;50(24):6048-58. Epub 2007 Oct 27. [17963371 ]
General Function:
Potassium channel regulator activity
Specific Function:
Regulatory subunit of the calcium activated potassium KCNMA1 (maxiK) channel. Modulates the calcium sensitivity and gating kinetics of KCNMA1, thereby contributing to KCNMA1 channel diversity. Increases the apparent Ca(2+)/voltage sensitivity of the KCNMA1 channel. It also modifies KCNMA1 channel kinetics and alters its pharmacological properties. It slows down the activation and the deactivation kinetics of the channel. Acts as a negative regulator of smooth muscle contraction by enhancing the calcium sensitivity to KCNMA1. Its presence is also a requirement for internal binding of the KCNMA1 channel opener dehydrosoyasaponin I (DHS-1) triterpene glycoside and for external binding of the agonist hormone 17-beta-estradiol (E2). Increases the binding activity of charybdotoxin (CTX) toxin to KCNMA1 peptide blocker by increasing the CTX association rate and decreasing the dissociation rate.
Gene Name:
KCNMB1
Uniprot ID:
Q16558
Molecular Weight:
21797.27 Da
References
  1. Bukiya AN, Singh AK, Parrill AL, Dopico AM: The steroid interaction site in transmembrane domain 2 of the large conductance, voltage- and calcium-gated potassium (BK) channel accessory beta1 subunit. Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20207-12. doi: 10.1073/pnas.1112901108. Epub 2011 Nov 28. [22123969 ]
General Function:
Transmembrane receptor protein tyrosine kinase activity
Specific Function:
Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis.
Gene Name:
EPHA2
Uniprot ID:
P29317
Molecular Weight:
108265.585 Da
References
  1. Incerti M, Tognolini M, Russo S, Pala D, Giorgio C, Hassan-Mohamed I, Noberini R, Pasquale EB, Vicini P, Piersanti S, Rivara S, Barocelli E, Mor M, Lodola A: Amino acid conjugates of lithocholic acid as antagonists of the EphA2 receptor. J Med Chem. 2013 Apr 11;56(7):2936-47. doi: 10.1021/jm301890k. Epub 2013 Mar 22. [23489211 ]
General Function:
Not Available
Specific Function:
Keratin-binding protein required for epithelial cell polarization. Involved in apical junction complex (AJC) assembly via its interaction with PARD3. Required for ciliogenesis.
Gene Name:
FBF1
Uniprot ID:
Q8TES7
Molecular Weight:
125445.19 Da
References
  1. Chae SY, Jin CH, Shin JH, Son S, Kim TH, Lee S, Youn YS, Byun Y, Lee MS, Lee KC: Biochemical, pharmaceutical and therapeutic properties of long-acting lithocholic acid derivatized exendin-4 analogs. J Control Release. 2010 Mar 3;142(2):206-13. doi: 10.1016/j.jconrel.2009.10.025. Epub 2009 Nov 10. [19900495 ]
General Function:
G-protein coupled bile acid receptor activity
Specific Function:
Receptor for bile acid. Bile acid-binding induces its internalization, activation of extracellular signal-regulated kinase and intracellular cAMP production. May be involved in the suppression of macrophage functions by bile acids.
Gene Name:
GPBAR1
Uniprot ID:
Q8TDU6
Molecular Weight:
35247.795 Da
References
  1. Ishizawa M, Matsunawa M, Adachi R, Uno S, Ikeda K, Masuno H, Shimizu M, Iwasaki K, Yamada S, Makishima M: Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia. J Lipid Res. 2008 Apr;49(4):763-72. doi: 10.1194/jlr.M700293-JLR200. Epub 2008 Jan 7. [18180267 ]
General Function:
Glutathione transferase activity
Specific Function:
Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles.
Gene Name:
GSTA1
Uniprot ID:
P08263
Molecular Weight:
25630.785 Da
References
  1. Lyon RP, Atkins WM: Kinetic characterization of native and cysteine 112-modified glutathione S-transferase A1-1: reassessment of nonsubstrate ligand binding. Biochemistry. 2002 Sep 10;41(36):10920-7. [12206662 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes.
Gene Name:
NR1I2
Uniprot ID:
O75469
Molecular Weight:
49761.245 Da
References
  1. Katona BW, Cummins CL, Ferguson AD, Li T, Schmidt DR, Mangelsdorf DJ, Covey DF: Synthesis, characterization, and receptor interaction profiles of enantiomeric bile acids. J Med Chem. 2007 Nov 29;50(24):6048-58. Epub 2007 Oct 27. [17963371 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Recruited to promoters via its interaction with BAZ1B/WSTF which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.
Gene Name:
VDR
Uniprot ID:
P11473
Molecular Weight:
48288.64 Da
References
  1. Peric M, Koglin S, Dombrowski Y, Gross K, Bradac E, Ruzicka T, Schauber J: VDR and MEK-ERK dependent induction of the antimicrobial peptide cathelicidin in keratinocytes by lithocholic acid. Mol Immunol. 2009 Oct;46(16):3183-7. doi: 10.1016/j.molimm.2009.08.010. Epub 2009 Sep 5. [19733911 ]
General Function:
Zinc ion binding
Specific Function:
Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 (By similarity). Specifically binds 9-cis retinoic acid (9C-RA).
Gene Name:
RXRB
Uniprot ID:
P28702
Molecular Weight:
56921.38 Da
References
  1. Radominska-Pandya A, Chen G: Photoaffinity labeling of human retinoid X receptor beta (RXRbeta) with 9-cis-retinoic acid: identification of phytanic acid, docosahexaenoic acid, and lithocholic acid as ligands for RXRbeta. Biochemistry. 2002 Apr 16;41(15):4883-90. [11939783 ]