You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2014-08-29 06:21:59 UTC
Update Date2014-12-24 20:26:46 UTC
Accession NumberT3D4320
Identification
Common NameL-Alanine
ClassSmall Molecule
DescriptionAlanine is a nonessential amino acid made in the body from the conversion of the carbohydrate pyruvate or the breakdown of DNA and the dipeptides carnosine and anserine. It is highly concentrated in muscle and is one of the most important amino acids released by muscle, functioning as a major energy source. Plasma alanine is often decreased when the BCAA (Branched Chain Amino Acids) are deficient. This finding may relate to muscle metabolism. Alanine is highly concentrated in meat products and other high-protein foods like wheat germ and cottage cheese. Alanine is an important participant as well as regulator in glucose metabolism. Alanine levels parallel blood sugar levels in both diabetes and hypoglycemia, and alanine reduces both severe hypoglycemia and the ketosis of diabetes. It is an important amino acid for lymphocyte reproduction and immunity. Alanine therapy has helped dissolve kidney stones in experimental animals. Normal alanine metabolism, like that of other amino acids, is highly dependent upon enzymes that contain vitamin B6. Alanine, like GABA, taurine and glycine, is an inhibitory neurotransmitter in the brain. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and the central nervous system.
Compound Type
  • Amine
  • Animal Toxin
  • Dietary Supplement
  • Drug
  • Food Toxin
  • Household Toxin
  • Metabolite
  • Micronutrient
  • Natural Compound
  • Non-Essential Amino Acid
  • Nutraceutical
  • Organic Compound
  • Supplement
Chemical Structure
Thumb
Synonyms
Synonym
(2S)-2-Aminopropanoate
(2S)-2-Aminopropanoic acid
(S)-(+)-Alanine
(S)-2-amino-Propanoate
(S)-2-amino-Propanoic acid
(S)-2-Aminopropanoate
(S)-2-Aminopropanoic acid
(S)-Alanine
2-Aminopropanoate
2-Aminopropanoic acid
2-Aminopropionate
2-Aminopropionic acid
2-Ammoniopropanoate
2-Ammoniopropanoic acid
a-Alanine
a-Aminopropionate
a-Aminopropionic acid
Ala
Alanine
alpha-Alanine
alpha-Aminopropanoate
alpha-Aminopropanoic acid
alpha-Aminopropionate
alpha-Aminopropionic acid
L-(+)-Alanine
L-2-Aminopropanoate
L-2-Aminopropanoic acid
L-2-Aminopropionate
L-2-Aminopropionic acid
L-a-Alanine
L-a-Aminopropionate
L-a-Aminopropionic acid
L-alpha-Alanine
L-alpha-Aminopropionate
L-alpha-Aminopropionic acid
L-α-alanine
Chemical FormulaC3H7NO2
Average Molecular Mass89.093 g/mol
Monoisotopic Mass89.048 g/mol
CAS Registry Number56-41-7
IUPAC Name(2S)-2-aminopropanoic acid
Traditional NameL-alanine
SMILES[H][C@@](C)(N)C(O)=O
InChI IdentifierInChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1
InChI KeyInChIKey=QNAYBMKLOCPYGJ-REOHCLBHSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as alanine and derivatives. Alanine and derivatives are compounds containing alanine or a derivative thereof resulting from reaction of alanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentAlanine and derivatives
Alternative Parents
Substituents
  • Alanine or derivatives
  • Alpha-amino acid
  • L-alpha-amino acid
  • Amino acid
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Hydrocarbon derivative
  • Organic oxygen compound
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Primary aliphatic amine
  • Carbonyl group
  • Amine
  • Organopnictogen compound
  • Organic oxide
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginEndogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Lysosome
  • Membrane
  • Mitochondria
  • Peroxisome
Biofluid LocationsNot Available
Tissue Locations
  • All Tissues
  • Prostate
Pathways
NameSMPDB LinkKEGG Link
Alanine MetabolismSMP00055 map00250
Glucose-Alanine CycleSMP00127 Not Available
Glycine and Serine MetabolismSMP00004 map00260
Selenoamino Acid MetabolismSMP00029 map00450
Transcription/TranslationSMP00019 Not Available
Urea CycleSMP00059 Not Available
Citrullinemia Type ISMP00001 Not Available
Hartnup DisorderSMP00189 Not Available
Lactic AcidemiaSMP00313 Not Available
Leigh SyndromeSMP00196 Not Available
Ornithine Transcarbamylase Deficiency (OTC Deficiency)SMP00205 Not Available
Pyruvate Carboxylase DeficiencySMP00350 Not Available
ApplicationsNot Available
Biological Roles
Chemical Roles
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point300 dec°C
Boiling PointNot Available
Solubility1.64E+005 mg/L (at 25°C)
LogP-2.85
Predicted Properties
PropertyValueSource
Water Solubility447 g/LALOGPS
logP-3ALOGPS
logP-2.8ChemAxon
logS0.7ALOGPS
pKa (Strongest Acidic)2.47ChemAxon
pKa (Strongest Basic)9.48ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area63.32 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity20.5 m³·mol⁻¹ChemAxon
Polarizability8.49 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (1 TMS)splash10-014i-0900000000-c7f6dbace291e8305a4eJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-014i-0900000000-381ddf4d9ea77be0b8a5JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-01b9-6900000000-6a7c1bb2915e5dd0791fJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-014i-1900000000-84b389f82562c29a8148JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-00kf-9000000000-b2f7507be509a85d821bJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-014i-0900000000-941672891ab94cf5015dJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0f79-0910000000-47bd3e3aa274a653a64eJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-014i-0900000000-c7f6dbace291e8305a4eJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-014i-0900000000-381ddf4d9ea77be0b8a5JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-QQ (Non-derivatized)splash10-0a4i-1940000000-5def9f7c902aaf1ef607JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-01b9-6900000000-6a7c1bb2915e5dd0791fJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-014i-1900000000-84b389f82562c29a8148JSpectraViewer | MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0006-9000000000-d31f7a2ed8284a740b59JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-0006-9100000000-ab365202f52df8e6d401JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0006-9000000000-96b54b269c91ab21be08JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0006-9000000000-a8008305399aa1097e1aJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0006-9000000000-7253c912562200edc231JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - EI-B (HITACHI RMU-6M) , Positivesplash10-00kf-9000000000-72694f3a1a5de3b49790JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-000i-9000000000-55d0139f513946f76461JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-000i-9000000000-5b0dff13a98daf782205JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-000i-9000000000-37db595fcf7364600bc9JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-0006-9000000000-5129e160acf979ac549eJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-0006-9000000000-11c20eba8c5ad41d806cJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-0006-9000000000-df7c7d6a6ae2d6bccefeJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-0006-9000000000-32477244247613182214JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-000f-9002000000-4873ce0cdcac54d68186JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - CE-ESI-TOF (CE-system connected to 6210 Time-of-Flight MS, Agilent) , Positivesplash10-0006-9000000000-8193842b36c819ca3ec6JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-000i-9000000000-55d0139f513946f76461JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-000i-9000000000-5b0dff13a98daf782205JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-000i-9000000000-37db595fcf7364600bc9JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-0006-9000000000-fefc31c264a2f0fcf6d0JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-0006-9000000000-ba42bcd60aa9182a780eJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-0006-9000000000-df7c7d6a6ae2d6bccefeJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0006-9000000000-080ffbbf05d95b7bcfe6JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0006-9000000000-0dfcc5cb0b7d9f01e04aJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-002f-9000000000-130c999fe6b63419cfa1JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-000i-9000000000-2ddc0bb04bae8f928a23JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-000i-9000000000-98c403c9cd494594babfJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-00di-9000000000-38a12affa4e4f4e91626JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
1D NMR13C NMR SpectrumNot AvailableJSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableJSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableJSpectraViewer
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityL-Alanine is a non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and the central nervous system. BCAAs are used as a source of energy for muscle cells. During prolonged exercise, BCAAs are released from skeletal muscles and their carbon backbones are used as fuel, while their nitrogen portion is used to form another amino acid, Alanine. Alanine is then converted to Glucose by the liver. This form of energy production is called the Alanine-Glucose cycle, and it plays a major role in maintaining the body's blood sugar balance.
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesUsed for protein synthesis.
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDDB00160
HMDB IDHMDB00161
PubChem Compound ID5950
ChEMBL IDCHEMBL12198
ChemSpider ID5735
KEGG IDC01401
UniProt IDNot Available
OMIM ID
ChEBI ID16977
BioCyc IDL-ALPHA-ALANINE
CTD IDNot Available
Stitch IDNot Available
PDB IDALA
ACToR IDNot Available
Wikipedia Link2-Aminopropanoic acid
References
Synthesis Reference

Daniel T. Belmont, Valerie Hendrickson, Mark J. Hoekman, “Process for the preparation of an L-alanine compound.” U.S. Patent US5268483, issued October, 1953.

MSDSLink
General References
  1. Iioka H, Hisanaga H, Moriyama IS, Akada S, Shimamoto T, Yamada Y, Ichijo M: Characterization of human placental activity for transport of L-alanine, using brush border (microvillous) membrane vesicles. Placenta. 1992 Mar-Apr;13(2):179-90. [1631030 ]
  2. Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [15911239 ]
  3. Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6. [12297216 ]
  4. Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [14992292 ]
  5. Bairaktari E, Katopodis K, Siamopoulos KC, Tsolas O: Paraquat-induced renal injury studied by 1H nuclear magnetic resonance spectroscopy of urine. Clin Chem. 1998 Jun;44(6 Pt 1):1256-61. [9625050 ]
  6. Saklatvala J: Hydrolysis of the elastase substrate succinyltrialanine nitroanilide by a metal-dependent enzyme in rheumatoid synovial fluid. J Clin Invest. 1977 May;59(5):794-801. [16038 ]
  7. Wevers RA, Engelke U, Wendel U, de Jong JG, Gabreels FJ, Heerschap A: Standardized method for high-resolution 1H-NMR of cerebrospinal fluid. Clin Chem. 1995 May;41(5):744-51. [7729054 ]
  8. Silwood CJ, Lynch E, Claxson AW, Grootveld MC: 1H and (13)C NMR spectroscopic analysis of human saliva. J Dent Res. 2002 Jun;81(6):422-7. [12097436 ]
  9. Klassen P, Furst P, Schulz C, Mazariegos M, Solomons NW: Plasma free amino acid concentrations in healthy Guatemalan adults and in patients with classic dengue. Am J Clin Nutr. 2001 Mar;73(3):647-52. [11237944 ]
  10. Stahl A, Frick A, Imler M, Schlienger JL: Semiautomated enzymic microassay for plasma L-alanine. Enzyme. 1979;24(5):294-301. [41707 ]
  11. Nicholson JK, O'Flynn MP, Sadler PJ, Macleod AF, Juul SM, Sonksen PH: Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J. 1984 Jan 15;217(2):365-75. [6696735 ]
  12. Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7. [6198473 ]
  13. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [19212411 ]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Pyridoxal phosphate binding
Specific Function:
Catalyzes the reversible transamination between alanine and 2-oxoglutarate to form pyruvate and glutamate.
Gene Name:
GPT2
Uniprot ID:
Q8TD30
Molecular Weight:
57903.11 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Yang RZ, Blaileanu G, Hansen BC, Shuldiner AR, Gong DW: cDNA cloning, genomic structure, chromosomal mapping, and functional expression of a novel human alanine aminotransferase. Genomics. 2002 Mar;79(3):445-50. [11863375 ]
  4. Jadhao SB, Yang RZ, Lin Q, Hu H, Anania FA, Shuldiner AR, Gong DW: Murine alanine aminotransferase: cDNA cloning, functional expression, and differential gene regulation in mouse fatty liver. Hepatology. 2004 May;39(5):1297-302. [15122758 ]
  5. Rajamohan F, Nelms L, Joslin DL, Lu B, Reagan WJ, Lawton M: cDNA cloning, expression, purification, distribution, and characterization of biologically active canine alanine aminotransferase-1. Protein Expr Purif. 2006 Jul;48(1):81-9. Epub 2006 Jan 30. [16495081 ]
General Function:
Trna binding
Specific Function:
Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged tRNA(Ala) via its editing domain.
Gene Name:
AARS
Uniprot ID:
P49588
Molecular Weight:
106809.525 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Nagan MC, Beuning P, Musier-Forsyth K, Cramer CJ: Importance of discriminator base stacking interactions: molecular dynamics analysis of A73 microhelix(Ala) variants. Nucleic Acids Res. 2000 Jul 1;28(13):2527-34. [10871402 ]
  4. McClain WH, Gabriel K, Schneider J: Specific function of a G.U wobble pair from an adjacent helical site in tRNA(Ala) during recognition by alanyl-tRNA synthetase. RNA. 1996 Feb;2(2):105-9. [8601277 ]
  5. Buechter DD, Schimmel P: Minor groove recognition of the critical acceptor helix base pair by an appended module of a class II tRNA synthetase. Biochemistry. 1995 May 9;34(18):6014-9. [7742303 ]
General Function:
Trna binding
Specific Function:
Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged tRNA(Ala) via its editing domain.
Gene Name:
AARS2
Uniprot ID:
Q5JTZ9
Molecular Weight:
107339.48 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Nagan MC, Beuning P, Musier-Forsyth K, Cramer CJ: Importance of discriminator base stacking interactions: molecular dynamics analysis of A73 microhelix(Ala) variants. Nucleic Acids Res. 2000 Jul 1;28(13):2527-34. [10871402 ]
  4. McClain WH, Gabriel K, Schneider J: Specific function of a G.U wobble pair from an adjacent helical site in tRNA(Ala) during recognition by alanyl-tRNA synthetase. RNA. 1996 Feb;2(2):105-9. [8601277 ]
  5. Buechter DD, Schimmel P: Minor groove recognition of the critical acceptor helix base pair by an appended module of a class II tRNA synthetase. Biochemistry. 1995 May 9;34(18):6014-9. [7742303 ]
General Function:
Sodium:dicarboxylate symporter activity
Specific Function:
Transporter for alanine, serine, cysteine, and threonine. Exhibits sodium dependence.
Gene Name:
SLC1A4
Uniprot ID:
P43007
Molecular Weight:
55722.455 Da
References
  1. Zhang Z, Papageorgiou G, Corrie JE, Grewer C: Pre-steady-state currents in neutral amino acid transporters induced by photolysis of a new caged alanine derivative. Biochemistry. 2007 Mar 27;46(12):3872-80. Epub 2007 Feb 21. [17311416 ]
  2. Takasaki C, Miura E, Watanabe M: Segmental and complementary expression of L-serine biosynthetic enzyme 3-phosphoglycerate dehydrogenase and neutral amino acid transporter ASCT1 in the mouse kidney. Biomed Res. 2007 Apr;28(2):61-9. [17510490 ]
  3. Zhang Z, Grewer C: The sodium-coupled neutral amino acid transporter SNAT2 mediates an anion leak conductance that is differentially inhibited by transported substrates. Biophys J. 2007 Apr 1;92(7):2621-32. Epub 2007 Jan 19. [17237199 ]
  4. Pinho MJ, Pinto V, Serrao MP, Jose PA, Soares-da-Silva P: Underexpression of the Na+-dependent neutral amino acid transporter ASCT2 in the spontaneously hypertensive rat kidney. Am J Physiol Regul Integr Comp Physiol. 2007 Jul;293(1):R538-47. Epub 2007 May 2. [17475673 ]
  5. Wu Y, Shen D, Chen Z, Clayton S, Vadgama JV: Taxol induced apoptosis regulates amino acid transport in breast cancer cells. Apoptosis. 2007 Mar;12(3):593-612. Epub 2006 Dec 29. [17195090 ]
General Function:
Transaminase activity
Specific Function:
Not Available
Gene Name:
AGXT
Uniprot ID:
P21549
Molecular Weight:
43009.535 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Salido EC, Li XM, Lu Y, Wang X, Santana A, Roy-Chowdhury N, Torres A, Shapiro LJ, Roy-Chowdhury J: Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18249-54. Epub 2006 Nov 16. [17110443 ]
  4. Amoroso A, Pirulli D, Florian F, Puzzer D, Boniotto M, Crovella S, Zezlina S, Spano A, Mazzola G, Savoldi S, Ferrettini C, Berutti S, Petrarulo M, Marangella M: AGXT gene mutations and their influence on clinical heterogeneity of type 1 primary hyperoxaluria. J Am Soc Nephrol. 2001 Oct;12(10):2072-9. [11562405 ]
  5. Pirulli D, Puzzer D, Ferri L, Crovella S, Amoroso A, Ferrettini C, Marangella M, Mazzola G, Florian F: Molecular analysis of hyperoxaluria type 1 in Italian patients reveals eight new mutations in the alanine: glyoxylate aminotransferase gene. Hum Genet. 1999 Jun;104(6):523-5. [10453743 ]
General Function:
Pyridoxal phosphate binding
Specific Function:
Catalyzes the reversible transamination between alanine and 2-oxoglutarate to form pyruvate and glutamate. Participates in cellular nitrogen metabolism and also in liver gluconeogenesis starting with precursors transported from skeletal muscles (By similarity).
Gene Name:
GPT
Uniprot ID:
P24298
Molecular Weight:
54636.415 Da
References
  1. Miyashita Y, Dolferus R, Ismond KP, Good AG: Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J. 2007 Mar;49(6):1108-21. Epub 2007 Feb 22. [17319845 ]
  2. Gray S, Wang B, Orihuela Y, Hong EG, Fisch S, Haldar S, Cline GW, Kim JK, Peroni OD, Kahn BB, Jain MK: Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab. 2007 Apr;5(4):305-12. [17403374 ]
  3. Taracha E, Habrat B, Chrapusta SJ, Lehner M, Wislowska A, Woronowicz BT, Bogulas M, Charewicz J, Markuszewski C, Plaznik A: Combining markers of nephrotoxicity and hepatotoxicity for improved monitoring and detection of chronic alcohol abuse. Clin Chem Lab Med. 2006;44(12):1446-52. [17163821 ]
  4. Chen CH, Lee RP, Wu WT, Liao KW, Hsu N, Hsu BG: Fluvastatin ameliorates endotoxin induced multiple organ failure in conscious rats. Resuscitation. 2007 Jul;74(1):166-74. Epub 2007 Mar 13. [17353078 ]
General Function:
Pyridoxal phosphate binding
Specific Function:
Can metabolize asymmetric dimethylarginine (ADMA) via transamination to alpha-keto-delta-(NN-dimethylguanidino) valeric acid (DMGV). ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure.
Gene Name:
AGXT2
Uniprot ID:
Q9BYV1
Molecular Weight:
57155.905 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Okuno E, Ishikawa T, Kawai J, Kido R: Alanine:glyoxylate aminotransferase activities in liver of Suncus murinus (insectivora). Comp Biochem Physiol B. 1988;90(4):773-8. [2907870 ]
  4. Takada Y, Mori T, Noguchi T: The effect of vitamin B6 deficiency on alanine: glyoxylate aminotransferase isoenzymes in rat liver. Arch Biochem Biophys. 1984 Feb 15;229(1):1-6. [6703688 ]
General Function:
L-proline transmembrane transporter activity
Specific Function:
Neutral amino acid/proton symporter. Has a pH-dependent electrogenic transport activity for small amino acids such as glycine, alanine and proline. Besides small apolar L-amino acids, it also recognize their D-enantiomers and selected amino acid derivatives such as gamma-aminobutyric acid (By similarity).
Gene Name:
SLC36A1
Uniprot ID:
Q7Z2H8
Molecular Weight:
53075.045 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory2800 uMNot AvailableBindingDB 50000099
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Miyauchi S, Abbot EL, Zhuang L, Subramanian R, Ganapathy V, Thwaites DT: Isolation and function of the amino acid transporter PAT1 (slc36a1) from rabbit and discrimination between transport via PAT1 and system IMINO in renal brush-border membrane vesicles. Mol Membr Biol. 2005 Nov-Dec;22(6):549-59. [16373326 ]
  4. Thondorf I, Voigt V, Schafer S, Gebauer S, Zebisch K, Laug L, Brandsch M: Three-dimensional quantitative structure-activity relationship analyses of substrates of the human proton-coupled amino acid transporter 1 (hPAT1). Bioorg Med Chem. 2011 Nov 1;19(21):6409-18. doi: 10.1016/j.bmc.2011.08.058. Epub 2011 Sep 5. [21955456 ]
General Function:
Succinate-semialdehyde dehydrogenase binding
Specific Function:
Catalyzes the conversion of gamma-aminobutyrate and L-beta-aminoisobutyrate to succinate semialdehyde and methylmalonate semialdehyde, respectively. Can also convert delta-aminovalerate and beta-alanine.
Gene Name:
ABAT
Uniprot ID:
P80404
Molecular Weight:
56438.405 Da
References
  1. Amadasi A, Bertoldi M, Contestabile R, Bettati S, Cellini B, di Salvo ML, Borri-Voltattorni C, Bossa F, Mozzarelli A: Pyridoxal 5'-phosphate enzymes as targets for therapeutic agents. Curr Med Chem. 2007;14(12):1291-324. [17504214 ]
  2. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]
General Function:
Transaminase activity
Specific Function:
Catalyzes the pyridoxal-phosphate-dependent breakdown of 5-phosphohydroxy-L-lysine, converting it to ammonia, inorganic phosphate and 2-aminoadipate semialdehyde.
Gene Name:
PHYKPL
Uniprot ID:
Q8IUZ5
Molecular Weight:
49710.245 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Pyridoxal phosphate binding
Specific Function:
Catalyzes the removal of elemental sulfur from cysteine to produce alanine. It supplies the inorganic sulfur for iron-sulfur (Fe-S) clusters. May be involved in the biosynthesis of molybdenum cofactor.
Gene Name:
NFS1
Uniprot ID:
Q9Y697
Molecular Weight:
50195.21 Da
References
  1. You D, Wang L, Yao F, Zhou X, Deng Z: A novel DNA modification by sulfur: DndA is a NifS-like cysteine desulfurase capable of assembling DndC as an iron-sulfur cluster protein in Streptomyces lividans. Biochemistry. 2007 May 22;46(20):6126-33. Epub 2007 May 1. [17469805 ]
  2. Zeng J, Zhang Y, Liu Y, Zhang X, Xia L, Liu J, Qiu G: Expression, purification and characterization of a cysteine desulfurase, IscS, from Acidithiobacillus ferrooxidans. Biotechnol Lett. 2007 Dec;29(12):1983-90. Epub 2007 Jul 28. [17660944 ]
General Function:
Pyridoxal phosphate binding
Specific Function:
Catalyzes the cleavage of L-kynurenine (L-Kyn) and L-3-hydroxykynurenine (L-3OHKyn) into anthranilic acid (AA) and 3-hydroxyanthranilic acid (3-OHAA), respectively. Has a preference for the L-3-hydroxy form. Also has cysteine-conjugate-beta-lyase activity.
Gene Name:
KYNU
Uniprot ID:
Q16719
Molecular Weight:
52351.14 Da
References
  1. Christensen M, Duno M, Lund AM, Skovby F, Christensen E: Xanthurenic aciduria due to a mutation in KYNU encoding kynureninase. J Inherit Metab Dis. 2007 Apr;30(2):248-55. Epub 2007 Mar 1. [17334708 ]
  2. Lima S, Khristoforov R, Momany C, Phillips RS: Crystal structure of Homo sapiens kynureninase. Biochemistry. 2007 Mar 13;46(10):2735-44. Epub 2007 Feb 15. [17300176 ]
General Function:
Toxin transporter activity
Specific Function:
Sodium-independent, high-affinity transport of small and large neutral amino acids such as alanine, serine, threonine, cysteine, phenylalanine, tyrosine, leucine, arginine and tryptophan, when associated with SLC3A2/4F2hc. Acts as an amino acid exchanger. Has higher affinity for L-phenylalanine than LAT1 but lower affinity for glutamine and serine. L-alanine is transported at physiological concentrations. Plays a role in basolateral (re)absorption of neutral amino acids. Involved in the uptake of methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes, and hence plays a role in metal ion homeostasis and toxicity. Involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the transmembrane. Plays an essential role in the reabsorption of neutral amino acids from the epithelial cells to the bloodstream in the kidney.
Gene Name:
SLC7A8
Uniprot ID:
Q9UHI5
Molecular Weight:
58381.12 Da
References
  1. Broer S, Broer A, Hansen JT, Bubb WA, Balcar VJ, Nasrallah FA, Garner B, Rae C: Alanine metabolism, transport, and cycling in the brain. J Neurochem. 2007 Sep;102(6):1758-70. Epub 2007 May 14. [17504263 ]