You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2014-08-29 06:35:14 UTC
Update Date2014-12-24 20:26:47 UTC
Accession NumberT3D4365
Identification
Common NameL-Leucine
ClassSmall Molecule
DescriptionLeucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other 'buffer' proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation.
Compound Type
  • Amine
  • Amino Acid, Essential
  • Animal Toxin
  • Dietary Supplement
  • Drug
  • Food Toxin
  • Metabolite
  • Micronutrient
  • Natural Compound
  • Nutraceutical
  • Organic Compound
  • Supplement
Chemical Structure
Thumb
Synonyms
Synonym
(2S)-2-Amino-4-methylpentanoate
(2S)-2-Amino-4-methylpentanoic acid
(2S)-alpha-2-Amino-4-methylvaleric acid
(2S)-alpha-Leucine
(S)-(+)-Leucine
(S)-2-Amino-4-methylpentanoate
(S)-2-Amino-4-methylpentanoic acid
(S)-2-Amino-4-methylvalerate
(S)-2-Amino-4-methylvaleric acid
(S)-Leucine
2-Amino-4-methylvaleric acid
4-Methyl-L-Norvaline
L
L-(+)-Leucine
L-a-Aminoisocaproate
L-a-Aminoisocaproic acid
L-alpha-Aminoisocaproate
L-alpha-Aminoisocaproic acid
L-Leucin
L-Leuzin
Leu
Leucine
Chemical FormulaC6H13NO2
Average Molecular Mass131.173 g/mol
Monoisotopic Mass131.095 g/mol
CAS Registry Number61-90-5
IUPAC Name(2S)-2-amino-4-methylpentanoic acid
Traditional NameL-leucine
SMILES[H][C@](N)(CC(C)C)C(O)=O
InChI IdentifierInChI=1S/C6H13NO2/c1-4(2)3-5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/t5-/m0/s1
InChI KeyInChIKey=ROHFNLRQFUQHCH-YFKPBYRVSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as leucine and derivatives. Leucine and derivatives are compounds containing leucine or a derivative thereof resulting from reaction of leucine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentLeucine and derivatives
Alternative Parents
Substituents
  • Leucine or derivatives
  • Alpha-amino acid
  • L-alpha-amino acid
  • Branched fatty acid
  • Methyl-branched fatty acid
  • Fatty acid
  • Fatty acyl
  • Amino acid
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Organic oxide
  • Organopnictogen compound
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Primary aliphatic amine
  • Carbonyl group
  • Organic oxygen compound
  • Amine
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginEndogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Mitochondria
Biofluid LocationsNot Available
Tissue Locations
  • Adipose Tissue
  • Adrenal Medulla
  • Bladder
  • Epidermis
  • Fibroblasts
  • Intestine
  • Kidney
  • Muscle
  • Nerve Cells
  • Neuron
  • Placenta
  • Platelet
  • Prostate
  • Skeletal Muscle
  • Testes
Pathways
NameSMPDB LinkKEGG Link
Transcription/TranslationSMP00019 Not Available
Valine, Leucine and Isoleucine DegradationSMP00032 map00280
Hartnup DisorderSMP00189 Not Available
ApplicationsNot Available
Biological Roles
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point293°C
Boiling PointNot Available
Solubility2.15E+004 mg/L (at 25°C)
LogP-1.52
Predicted Properties
PropertyValueSource
Water Solubility69.8 g/LALOGPS
logP-1.8ALOGPS
logP-1.6ChemAxon
logS-0.27ALOGPS
pKa (Strongest Acidic)2.79ChemAxon
pKa (Strongest Basic)9.52ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area63.32 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity34.17 m³·mol⁻¹ChemAxon
Polarizability14.16 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-0pb9-0900000000-c0176b3cef05fc597576JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-0a4i-0900000000-eb7cee37b9d78694010cJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-0a4i-0900000000-7033b5fdcd4216168462JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-0a4i-0900000000-cd1de48a6db61eb4455eJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-05fr-7900000000-e3b993b282ec2115b484JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0019-9000000000-6e468213b3429cf627bcJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0a4i-0900000000-ef06e48ca82519977a37JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0pb9-0900000000-c0176b3cef05fc597576JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0a4i-0900000000-eb7cee37b9d78694010cJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0a4i-0900000000-7033b5fdcd4216168462JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0a4i-0900000000-cd1de48a6db61eb4455eJSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-QQ (Non-derivatized)splash10-0udi-1391000000-5183562a14017e557e33JSpectraViewer | MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-05fr-7900000000-e3b993b282ec2115b484JSpectraViewer | MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0006-9000000000-70cdb961a0819be4318aJSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-000i-9100000000-991398731b9d8305622cJSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-000i-9100000000-05b5a7a191a32803595eJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0006-9000000000-5302e9c96e75e06e9705JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0006-9000000000-9e70778b46864cd22996JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - EI-B (HITACHI M-80) , Positivesplash10-0019-9000000000-6e468213b3429cf627bcJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-4f403c61aaa8a103c049JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-d85fcc558423654f45fdJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-931937d3bdd49b3ae623JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0002-0930000000-aa1256c9224fecacf025JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-0a72425a86f804d3a16bJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-4ed8cafebf4ee4e82e6aJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-3ac62b780abd90dd28b1JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-eb75eb03a58512ea36dfJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-001i-0900000000-c0f28e4ebdef67c5b509JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-001i-0900000000-0751a9e803a2e7715d1aJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-001i-5900000000-8040fc883917239630a7JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-016s-9000000000-a7f9e8d43e66dbd02b6fJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-001r-7900000000-da119558c426d9c9d3a1JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-000i-9000000000-ae8365105ae2a18e0c10JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-000f-9000000000-228ee614be6648b37433JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-0006-9000000000-d1f3e047af455e156a1eJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-0006-9000000000-409dfbdb20719c3afda5JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - CE-ESI-TOF (CE-system connected to 6210 Time-of-Flight MS, Agilent) , Positivesplash10-001i-0900000000-720554d58264a9cfdb67JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-001i-0900000000-90fab591d1f6d6318002JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-001i-0900000000-ed843252a559d532dc5eJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0019-9500000000-b9f1203176ce0ca7c11cJSpectraViewer
MSMass Spectrum (Electron Ionization)splash10-000l-9000000000-bf752e458f13eed8d7a2JSpectraViewer | MoNA
1D NMR13C NMR SpectrumNot AvailableJSpectraViewer
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
1D NMR1H NMR SpectrumNot AvailableJSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableJSpectraViewer
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityThis group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates. The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic. There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological problems are due to poor formation of myelin in the CNS.
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesIndicated to assist in the prevention of the breakdown of muscle proteins that sometimes occur after trauma or severe stress.
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDDB00149
HMDB IDHMDB00687
PubChem Compound ID6106
ChEMBL IDCHEMBL291962
ChemSpider ID5880
KEGG IDC00123
UniProt IDNot Available
OMIM ID
ChEBI ID15603
BioCyc IDLEU
CTD IDNot Available
Stitch IDNot Available
PDB IDLEU
ACToR IDNot Available
Wikipedia LinkL-Leucine
References
Synthesis Reference

Takayasu Tsuchida, Haruo Momose, Yoshio Hirose, “Process for producing L-leucine.” U.S. Patent US3970519, issued February, 1975.

MSDSLink
General References
  1. Deng C, Shang C, Hu Y, Zhang X: Rapid diagnosis of phenylketonuria and other aminoacidemias by quantitative analysis of amino acids in neonatal blood spots by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Jul 25;775(1):115-20. [12101068 ]
  2. Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [15911239 ]
  3. Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6. [12297216 ]
  4. Yoshimasa T, Nakao K, Ohtsuki H, Li S, Imura H: Methionine-enkephalin and leucine-enkephalin in human sympathoadrenal system and pheochromocytoma. J Clin Invest. 1982 Mar;69(3):643-50. [7061706 ]
  5. Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [14992292 ]
  6. Jansson T, Scholtbach V, Powell TL: Placental transport of leucine and lysine is reduced in intrauterine growth restriction. Pediatr Res. 1998 Oct;44(4):532-7. [9773842 ]
  7. Nicholson JK, O'Flynn MP, Sadler PJ, Macleod AF, Juul SM, Sonksen PH: Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J. 1984 Jan 15;217(2):365-75. [6696735 ]
  8. Lichtenstein AH, Hachey DL, Millar JS, Jenner JL, Booth L, Ordovas J, Schaefer EJ: Measurement of human apolipoprotein B-48 and B-100 kinetics in triglyceride-rich lipoproteins using [5,5,5-2H3]leucine. J Lipid Res. 1992 Jun;33(6):907-14. [1512514 ]
  9. Mero A: Leucine supplementation and intensive training. Sports Med. 1999 Jun;27(6):347-58. [10418071 ]
  10. Sakamoto M, Nakao K, Yoshimasa T, Ikeda Y, Suda M, Takasu K, Shimbo S, Yanaihara N, Imura H: Occurrence of methionine-enkephalin-Arg6-Gly7-Leu8 with methionine-enkephalin, leucine-enkephalin and methionine-enkephalin-Arg6-Phe7 in human gastric antrum. J Clin Endocrinol Metab. 1983 Jan;56(1):202-4. [6847871 ]
  11. Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A, Nissim I: Brain amino acid requirements and toxicity: the example of leucine. J Nutr. 2005 Jun;135(6 Suppl):1531S-8S. [15930465 ]
  12. Iannoli P, Miller JH, Wang HT, Bode B, Souba WW, Avissar NE, Sax HC: Characterization of L-leucine transport system in brush border membranes from human and rabbit small intestine. Metabolism. 1999 Nov;48(11):1432-6. [10582553 ]
  13. Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7. [6198473 ]
  14. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [19212411 ]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Leucine-trna ligase activity
Specific Function:
Catalyzes the specific attachment of an amino acid to its cognate tRNA in a two step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. Exhibits a post-transfer editing activity to hydrolyze mischarged tRNAs.
Gene Name:
LARS
Uniprot ID:
Q9P2J5
Molecular Weight:
134465.155 Da
References
  1. Ma JJ, Zhao MW, Wang ED: Split leucine-specific domain of leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus. Biochemistry. 2006 Dec 12;45(49):14809-16. [17144674 ]
  2. Karkhanis VA, Boniecki MT, Poruri K, Martinis SA: A viable amino acid editing activity in the leucyl-tRNA synthetase CP1-splicing domain is not required in the yeast mitochondria. J Biol Chem. 2006 Nov 3;281(44):33217-25. Epub 2006 Sep 6. [16956879 ]
  3. Vu MT, Martinis SA: A unique insert of leucyl-tRNA synthetase is required for aminoacylation and not amino acid editing. Biochemistry. 2007 May 1;46(17):5170-6. Epub 2007 Apr 4. [17407263 ]
  4. Hsu JL, Rho SB, Vannella KM, Martinis SA: Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles. J Biol Chem. 2006 Aug 11;281(32):23075-82. Epub 2006 Jun 14. [16774921 ]
  5. Dohm JC, Vingron M, Staub E: Horizontal gene transfer in aminoacyl-tRNA synthetases including leucine-specific subtypes. J Mol Evol. 2006 Oct;63(4):437-47. Epub 2006 Sep 4. [16955236 ]
General Function:
Leucine-trna ligase activity
Specific Function:
Not Available
Gene Name:
LARS2
Uniprot ID:
Q15031
Molecular Weight:
101975.43 Da
References
  1. Ma JJ, Zhao MW, Wang ED: Split leucine-specific domain of leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus. Biochemistry. 2006 Dec 12;45(49):14809-16. [17144674 ]
  2. Zhu B, Zhao MW, Eriani G, Wang ED: A present-day aminoacyl-tRNA synthetase with ancestral editing properties. RNA. 2007 Jan;13(1):15-21. Epub 2006 Nov 9. [17095543 ]
  3. Vu MT, Martinis SA: A unique insert of leucyl-tRNA synthetase is required for aminoacylation and not amino acid editing. Biochemistry. 2007 May 1;46(17):5170-6. Epub 2007 Apr 4. [17407263 ]
  4. Hsu JL, Rho SB, Vannella KM, Martinis SA: Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles. J Biol Chem. 2006 Aug 11;281(32):23075-82. Epub 2006 Jun 14. [16774921 ]
  5. Lue SW, Kelley SO: A single residue in leucyl-tRNA synthetase affecting amino acid specificity and tRNA aminoacylation. Biochemistry. 2007 Apr 17;46(15):4466-72. Epub 2007 Mar 23. [17378584 ]
General Function:
L-valine transaminase activity
Specific Function:
Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine. May also function as a transporter of branched chain alpha-keto acids.
Gene Name:
BCAT2
Uniprot ID:
O15382
Molecular Weight:
44287.445 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Berger BJ, English S, Chan G, Knodel MH: Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. J Bacteriol. 2003 Apr;185(8):2418-31. [12670965 ]
General Function:
L-valine transaminase activity
Specific Function:
Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine.
Gene Name:
BCAT1
Uniprot ID:
P54687
Molecular Weight:
42965.815 Da
References
  1. Chen CD, Huang TF, Lin CH, Guan HH, Hsieh YC, Lin YH, Huang YC, Liu MY, Chang WC, Chen CJ: Purification, crystallization and preliminary X-ray crystallographic analysis of branched-chain aminotransferase from Deinococcus radiodurans. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Jun 1;63(Pt 6):492-4. Epub 2007 May 5. [17554170 ]
  2. Saito M, Nishimura K, Wakabayashi S, Kurihara T, Nagata Y: Purification of branched-chain amino acid aminotransferase from Helicobacter pylori NCTC 11637. Amino Acids. 2007 Sep;33(3):445-9. Epub 2006 Nov 2. [17077963 ]
General Function:
S-adenosylmethionine-dependent methyltransferase activity
Specific Function:
Methylates the carboxyl group of the C-terminal leucine residue of protein phosphatase 2A catalytic subunits to form alpha-leucine ester residues.
Gene Name:
LCMT1
Uniprot ID:
Q9UIC8
Molecular Weight:
38378.695 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Trna methyltransferase activity
Specific Function:
Probable S-adenosyl-L-methionine-dependent methyltransferase that acts as a component of the wybutosine biosynthesis pathway. Wybutosine is a hyper modified guanosine with a tricyclic base found at the 3'-position adjacent to the anticodon of eukaryotic phenylalanine tRNA (By similarity). May methylate the carboxyl group of leucine residues to form alpha-leucine ester residues.
Gene Name:
LCMT2
Uniprot ID:
O60294
Molecular Weight:
75601.095 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Pyrophosphatase activity
Specific Function:
This isozyme may play a role in skeletal mineralization.
Gene Name:
ALPL
Uniprot ID:
P05186
Molecular Weight:
57304.435 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC50>5 uMNot AvailableBindingDB 50219348
References
  1. Lanier M, Sergienko E, Simao AM, Su Y, Chung T, Millan JL, Cashman JR: Design and synthesis of selective inhibitors of placental alkaline phosphatase. Bioorg Med Chem. 2010 Jan 15;18(2):573-9. doi: 10.1016/j.bmc.2009.12.012. Epub 2009 Dec 11. [20031422 ]
General Function:
Zinc ion binding
Specific Function:
Not Available
Gene Name:
ALPI
Uniprot ID:
P09923
Molecular Weight:
56811.695 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC50>5 uMNot AvailableBindingDB 50219348
References
  1. Lanier M, Sergienko E, Simao AM, Su Y, Chung T, Millan JL, Cashman JR: Design and synthesis of selective inhibitors of placental alkaline phosphatase. Bioorg Med Chem. 2010 Jan 15;18(2):573-9. doi: 10.1016/j.bmc.2009.12.012. Epub 2009 Dec 11. [20031422 ]
General Function:
Phospholipase a2 activator activity
Specific Function:
Involved in the maintenance of ubiquitin levels.
Gene Name:
PLAA
Uniprot ID:
Q9Y263
Molecular Weight:
87156.21 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC50>5 uMNot AvailableBindingDB 50219348
References
  1. Lanier M, Sergienko E, Simao AM, Su Y, Chung T, Millan JL, Cashman JR: Design and synthesis of selective inhibitors of placental alkaline phosphatase. Bioorg Med Chem. 2010 Jan 15;18(2):573-9. doi: 10.1016/j.bmc.2009.12.012. Epub 2009 Dec 11. [20031422 ]
General Function:
L-proline transmembrane transporter activity
Specific Function:
Neutral amino acid/proton symporter. Has a pH-dependent electrogenic transport activity for small amino acids such as glycine, alanine and proline. Besides small apolar L-amino acids, it also recognize their D-enantiomers and selected amino acid derivatives such as gamma-aminobutyric acid (By similarity).
Gene Name:
SLC36A1
Uniprot ID:
Q7Z2H8
Molecular Weight:
53075.045 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory100000 uMNot AvailableBindingDB 50219348
References
  1. Thondorf I, Voigt V, Schafer S, Gebauer S, Zebisch K, Laug L, Brandsch M: Three-dimensional quantitative structure-activity relationship analyses of substrates of the human proton-coupled amino acid transporter 1 (hPAT1). Bioorg Med Chem. 2011 Nov 1;19(21):6409-18. doi: 10.1016/j.bmc.2011.08.058. Epub 2011 Sep 5. [21955456 ]