Record Information
Version2.0
Creation Date2009-07-21 20:26:48 UTC
Update Date2014-12-24 20:25:51 UTC
Accession NumberT3D2777
Identification
Common NameAlprazolam
ClassSmall Molecule
DescriptionAlprazolam is only found in individuals that have used or taken this drug. It is a triazolobenzodiazepine compound with antianxiety and sedative-hypnotic actions, that is efficacious in the treatment of panic disorders, with or without agoraphobia, and in generalized anxiety disorders. (From AMA Drug Evaluations Annual, 1994, p238) Benzodiazepines bind nonspecifically to benzodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell.
Compound Type
  • Anti-Anxiety Agent
  • Benzodiazepine
  • Drug
  • GABA Modulator
  • Hypnotic and Sedative
  • Metabolite
  • Organic Compound
  • Organochloride
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
8-Chloro-1-methyl-6-phenyl-4H-S-triazolo(4,3-a)(1,4)benzodiazepine
Alplax
Alprazolan
Alpronax
Alprox
Alviz
Cassadan
Esparon
Niravam
Ralozam
Restyl
Solanax
Tafil
Trankimazin
Tranquinal
TUS-1
Xanax
Xanax XR
Xanor
Chemical FormulaC17H13ClN4
Average Molecular Mass308.765 g/mol
Monoisotopic Mass308.083 g/mol
CAS Registry Number28981-97-7
IUPAC Name12-chloro-3-methyl-9-phenyl-2,4,5,8-tetraazatricyclo[8.4.0.0²,⁶]tetradeca-1(10),3,5,8,11,13-hexaene
Traditional Nameneurol
SMILESCC1=NN=C2CN=C(C3=CC=CC=C3)C3=C(C=CC(Cl)=C3)N12
InChI IdentifierInChI=1S/C17H13ClN4/c1-11-20-21-16-10-19-17(12-5-3-2-4-6-12)14-9-13(18)7-8-15(14)22(11)16/h2-9H,10H2,1H3
InChI KeyInChIKey=VREFGVBLTWBCJP-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as 1,2,4-triazolo[4,3-a][1,4]benzodiazepines. These are aromatic compounds containing a 1,4-benzodiazepine fused to and sharing a nitrogen atom with a 1,2,4-triazole ring.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassBenzodiazepines
Sub Class1,4-benzodiazepines
Direct Parent1,2,4-triazolo[4,3-a][1,4]benzodiazepines
Alternative Parents
Substituents
  • 1,2,4-triazolo[4,3-a][1,4]benzodiazepine
  • Aryl chloride
  • Aryl halide
  • Monocyclic benzene moiety
  • Benzenoid
  • Azole
  • 1,2,4-triazole
  • Heteroaromatic compound
  • Ketimine
  • Propargyl-type 1,3-dipolar organic compound
  • Organic 1,3-dipolar compound
  • Azacycle
  • Organopnictogen compound
  • Organic nitrogen compound
  • Organonitrogen compound
  • Organochloride
  • Organohalogen compound
  • Imine
  • Hydrocarbon derivative
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Cytoplasm
  • Membrane
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
Applications
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point228-229.5°C
Boiling PointNot Available
Solubility40 mg/L at pH 7; 12 mg/mL at pH 1.2
LogP2.12
Predicted Properties
PropertyValueSource
Water Solubility0.032 g/LALOGPS
logP2.23ALOGPS
logP2.37ChemAxon
logS-4ALOGPS
pKa (Strongest Acidic)18.3ChemAxon
pKa (Strongest Basic)5.08ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area43.07 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity98.88 m³·mol⁻¹ChemAxon
Polarizability32.22 ųChemAxon
Number of Rings4ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-002f-4090000000-d08d3360d39ebeeb87f82017-09-01View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-qTof , Positivesplash10-0a4i-0910000000-9efa6a8a3dea17fc1ce72017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-0a59-0079000000-e4c35fb4df41aa5cc62e2017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - , positivesplash10-0bt9-0169000000-0e6779728f3bdec2acf12017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - , positivesplash10-0a4i-0910000000-9efa6a8a3dea17fc1ce72017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - -1V, Positivesplash10-0a59-0069000000-a0ce5531f8b2cb70eb282021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 35V, Positivesplash10-0a59-0097000000-5b89356bc4e59b2029682021-09-20View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a4i-0009000000-be2bb3a7878fa113efc82016-08-01View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a4i-0039000000-7bd62157388fecd0e4302016-08-01View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0o93-3390000000-307fd2f8dd5a9c4f7eac2016-08-01View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0a4i-0029000000-ceec7f24f309605ec6fb2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0a4i-0097000000-d61397bd13173381fc0d2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0udi-3290000000-370bd9e4b8fa73925c042016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0a4i-0009000000-4c14e6d547df7e93b2042021-09-24View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0a4i-0019000000-4e5c057a93f515a3aad62021-09-24View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-001i-9021000000-63a97e91d4073b1a51cb2021-09-24View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a4i-0009000000-f3356a9af159cd5dbe122021-09-24View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a4i-0009000000-f3356a9af159cd5dbe122021-09-24View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-004i-1090000000-a69b3052aba45b7146932021-09-24View Spectrum
MSMass Spectrum (Electron Ionization)splash10-0kdi-4792000000-9f1cdda14e36000955d32014-09-20View Spectrum
Toxicity Profile
Route of ExposureOral. Readily absorbed from the gastrointestinal tract. Bioavailability is 80-90%.
Mechanism of ToxicityBenzodiazepines bind nonspecifically to benzodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell.
MetabolismHepatic. Hydroxylated in the liver to α-hydroxyalprazolam, which is also active. This and other metabolites are later excreted in urine as glucuronides. Route of Elimination: Alprazolam and its metabolites are excreted primarily in the urine. Half Life: 6.3-26.9 hours
Toxicity ValuesLD50: 1020 mg/kg (Oral, mouse)
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesFor the management of anxiety disorder or the short-term relief of symptoms of anxiety and for the treatment of panic disorder, with or without agoraphobia.
Minimum Risk LevelNot Available
Health EffectsThey cause slurred speech, disorientation and "drunken" behavior. They are physically and psychologically addictive.
SymptomsSymptoms of overdose include confusion, coma, impaired coordination, sleepiness, and slowed reaction time.
TreatmentAs in all cases of drug overdosage, respiration, pulse rate, and blood pressure should be monitored. General supportive measures should be employed, along with immediate gastric lavage. Intravenous fluids should be administered and an adequate airway maintained. If hypotension occurs, it may be combated by the use of vasopressors. Dialysis is of limited value. Flumazenil, a specific benzodiazepine receptor antagonist, is indicated for the complete or partial reversal of the sedative effects of benzodiazepines and may be used in situations when an overdose with a benzodiazepine is known or suspected. (9)
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDDB00404
HMDB IDHMDB14548
PubChem Compound ID2118
ChEMBL IDCHEMBL661
ChemSpider ID2034
KEGG IDC06817
UniProt IDNot Available
OMIM ID
ChEBI ID2611
BioCyc IDNot Available
CTD IDNot Available
Stitch IDAlprazolam
PDB ID08H
ACToR IDNot Available
Wikipedia LinkAlprazolam
References
Synthesis Reference

Hester, J.B., Jr.; US. Patent 3,681,343; August 1,1972; assigned to The Upjohn Company. Hester, J.B., Jr.; US.Patent 3,781,289; December 25,1973;assigned to The Upjohn Company. Hester, J.B., Jr.; U S . Patent 3,709898; January 9,1973; assigned to The Upjohn Company.

MSDSLink
General References
  1. Risse SC, Whitters A, Burke J, Chen S, Scurfield RM, Raskind MA: Severe withdrawal symptoms after discontinuation of alprazolam in eight patients with combat-induced posttraumatic stress disorder. J Clin Psychiatry. 1990 May;51(5):206-9. [2335496 ]
  2. Wolf B, Griffiths RR: Physical dependence on benzodiazepines: differences within the class. Drug Alcohol Depend. 1991 Dec 31;29(2):153-6. [1686752 ]
  3. Haque W, Watson DJ, Bryant SG: Death following suspected alprazolam withdrawal seizures: a case report. Tex Med. 1990 Jan;86(1):44-7. [2300914 ]
  4. Hori A: Pharmacotherapy for personality disorders. Psychiatry Clin Neurosci. 1998 Feb;52(1):13-9. [9682928 ]
  5. Garcia-Algar O, Lopez-Vilchez MA, Martin I, Mur A, Pellegrini M, Pacifici R, Rossi S, Pichini S: Confirmation of gestational exposure to alprazolam by analysis of biological matrices in a newborn with neonatal sepsis. Clin Toxicol (Phila). 2007;45(3):295-8. [17453885 ]
  6. Potschka H, Friderichs E, Loscher W: Anticonvulsant and proconvulsant effects of tramadol, its enantiomers and its M1 metabolite in the rat kindling model of epilepsy. Br J Pharmacol. 2000 Sep;131(2):203-12. [10991912 ]
  7. AMA Drug Evaluations Annual, 1994, p238
  8. Drugs.com [Link]
  9. RxList: The Internet Drug Index (2009). [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular Weight:
51325.85 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  4. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular Weight:
55164.055 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  4. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Transporter activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular Weight:
52145.645 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  4. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
4. GABA-A receptor (anion channel) (Protein Group)
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Included Proteins:
P14867 , P47869 , P34903 , P48169 , P31644 , Q16445 , P18505 , P47870 , P28472 , O14764 , P78334 , Q8N1C3 , P18507 , Q99928 , O00591 , Q9UN88
References
  1. Riss J, Cloyd J, Gates J, Collins S: Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurol Scand. 2008 Aug;118(2):69-86. doi: 10.1111/j.1600-0404.2008.01004.x. Epub 2008 Mar 31. [18384456 ]
  2. Verster JC, Volkerts ER: Clinical pharmacology, clinical efficacy, and behavioral toxicity of alprazolam: a review of the literature. CNS Drug Rev. 2004 Spring;10(1):45-76. [14978513 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA4
Uniprot ID:
P48169
Molecular Weight:
61622.645 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA6
Uniprot ID:
Q16445
Molecular Weight:
51023.69 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRB1
Uniprot ID:
P18505
Molecular Weight:
54234.085 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB2
Uniprot ID:
P47870
Molecular Weight:
59149.895 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Gaba-gated chloride ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB3
Uniprot ID:
P28472
Molecular Weight:
54115.04 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRD
Uniprot ID:
O14764
Molecular Weight:
50707.835 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRE
Uniprot ID:
P78334
Molecular Weight:
57971.175 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG1
Uniprot ID:
Q8N1C3
Molecular Weight:
53594.49 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRG2
Uniprot ID:
P18507
Molecular Weight:
54161.78 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG3
Uniprot ID:
Q99928
Molecular Weight:
54288.16 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. In the uterus, the function of the receptor appears to be related to tissue contractility. The binding of this pI subunit with other GABA(A) receptor subunits alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone.
Gene Name:
GABRP
Uniprot ID:
O00591
Molecular Weight:
50639.735 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-1 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR1
Uniprot ID:
P24046
Molecular Weight:
55882.91 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-2 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR2
Uniprot ID:
P28476
Molecular Weight:
54150.41 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]
General Function:
Platelet activating factor receptor activity
Specific Function:
Receptor for platelet activating factor, a chemotactic phospholipid mediator that possesses potent inflammatory, smooth-muscle contractile and hypotensive activity. Seems to mediate its action via a G protein that activates a phosphatidylinositol-calcium second messenger system.
Gene Name:
PTAFR
Uniprot ID:
P25105
Molecular Weight:
39203.075 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory2.61 uMNot AvailableBindingDB 50001728
IC5022 uMNot AvailableBindingDB 50001728
References
  1. Trova MP, Wissner A, Carroll ML, Kerwar SS, Pickett WC, Schaub RE, Torley LW, Kohler CA: Analogues of platelet activating factor. 8. Antagonists of PAF containing an aromatic ring linked to a pyridinium ring. J Med Chem. 1993 Mar 5;36(5):580-90. [8496938 ]
  2. Tahraoui L, Floch A, Cavero I: Functional validation of platelet-activating factor receptor sites characterized biochemically by a specific and reproducible [3H]platelet-activating factor binding in human platelets. J Pharmacol Exp Ther. 1990 Mar;252(3):1221-7. [2156995 ]
General Function:
Cholesterol binding
Specific Function:
Can bind protoporphyrin IX and may play a role in the transport of porphyrins and heme (By similarity). Promotes the transport of cholesterol across mitochondrial membranes and may play a role in lipid metabolism (PubMed:24814875), but its precise physiological role is controversial. It is apparently not required for steroid hormone biosynthesis. Was initially identified as peripheral-type benzodiazepine receptor; can also bind isoquinoline carboxamides (PubMed:1847678).
Gene Name:
TSPO
Uniprot ID:
P30536
Molecular Weight:
18827.81 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
P53 binding
Specific Function:
Chromatin reader protein that recognizes and binds acetylated histones and plays a key role in transmission of epigenetic memory across cell divisions and transcription regulation. Remains associated with acetylated chromatin throughout the entire cell cycle and provides epigenetic memory for postmitotic G1 gene transcription by preserving acetylated chromatin status and maintaining high-order chromatin structure. During interphase, plays a key role in regulating the transcription of signal-inducible genes by associating with the P-TEFb complex and recruiting it to promoters: BRD4 is required to form the transcriptionally active P-TEFb complex by displacing negative regulators such as HEXIM1 and 7SKsnRNA complex from P-TEFb, thereby transforming it into an active form that can then phosphorylate the C-terminal domain (CTD) of RNA polymerase II. Promotes phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II. According to a report, directly acts as an atypical protein kinase and mediates phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II; these data however need additional evidences in vivo (PubMed:22509028). In addition to acetylated histones, also recognizes and binds acetylated RELA, leading to further recruitment of the P-TEFb complex and subsequent activation of NF-kappa-B. Also acts as a regulator of p53/TP53-mediated transcription: following phosphorylation by CK2, recruited to p53/TP53 specific target promoters.Isoform B: Acts as a chromatin insulator in the DNA damage response pathway. Inhibits DNA damage response signaling by recruiting the condensin-2 complex to acetylated histones, leading to chromatin structure remodeling, insulating the region from DNA damage response by limiting spreading of histone H2AFX/H2A.x phosphorylation.
Gene Name:
BRD4
Uniprot ID:
O60885
Molecular Weight:
152217.955 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Dissociation2.46 uMNot AvailableBindingDB 50001728
References
  1. Filippakopoulos P, Picaud S, Fedorov O, Keller M, Wrobel M, Morgenstern O, Bracher F, Knapp S: Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorg Med Chem. 2012 Mar 15;20(6):1878-86. doi: 10.1016/j.bmc.2011.10.080. Epub 2011 Nov 4. [22137933 ]
General Function:
Type b gastrin/cholecystokinin receptor binding
Specific Function:
Receptor for gastrin and cholecystokinin. The CKK-B receptors occur throughout the central nervous system where they modulate anxiety, analgesia, arousal, and neuroleptic activity. This receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system.Isoform 2 is constitutively activated and may regulate cancer cell proliferation via a gastrin-independent mechanism.
Gene Name:
CCKBR
Uniprot ID:
P32239
Molecular Weight:
48418.51 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC50>100 uMNot AvailableBindingDB 50001728
References
  1. Bock MG, DiPardo RM, Evans BE, Rittle KE, Veber DF, Freidinger RM, Chang RS, Lotti VJ: Cholecystokinin antagonists. Synthesis and biological evaluation of 4-substituted 4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepines. J Med Chem. 1988 Jan;31(1):176-81. [3336017 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRR3
Uniprot ID:
A8MPY1
Molecular Weight:
54271.1 Da
References
  1. Iorio LC, Barnett A, Billard W: Selective affinity of 1-N-trifluoroethyl benzodiazepines for cerebellar type 1 receptor sites. Life Sci. 1984 Jul 2;35(1):105-13. [6738302 ]
  2. Wamsley JK, Golden JS, Yamamura HI, Barnett A: Autoradiographic demonstration of the selectivity of two 1-N-trifluoroethyl benzodiazepines for the BZD-1 receptors in the rat brain. Pharmacol Biochem Behav. 1985 Dec;23(6):973-8. [2867566 ]