Record Information
Version2.0
Creation Date2014-08-29 05:47:21 UTC
Update Date2014-12-24 20:26:40 UTC
Accession NumberT3D4154
Identification
Common NameNorepinephrine
ClassSmall Molecule
DescriptionNoradrenalin is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic. [PubChem]
Compound Type
  • Adrenergic alpha-Agonist
  • Amine
  • Drug
  • Food Toxin
  • Metabolite
  • Natural Compound
  • Organic Compound
  • Sympathomimetic
  • Uremic Toxin
  • Vasoconstrictor Agent
Chemical Structure
Thumb
Synonyms
Synonym
(-)-(R)-Norepinephrine
(-)-alpha-(Aminomethyl)protocatechuyl alcohol
(-)-Arterenol
(-)-Noradrenaline
(-)-Norepinephrine
(R)-(-)-Norepinephrine
(R)-4-(2-Amino-1-hydroxyethyl)-1,2-benzenediol
(R)-Noradrenaline
(R)-Norepinephrine
4-(2-Amino-1-hydroxyethyl)-1,2-benzenediol
4-[(1R)-2-Amino-1-hydroxyethyl]-1,2-benzenediol
Adrenor
Aktamin
Arterenol
L-2-Amino-1-(3,4-dihydroxyphenyl)ethanol
L-3,4-Dihydroxyphenylethanolamine
L-alpha-(Aminomethyl)-3,4-dihydroxybenzyl alcohol
L-Arterenol
L-Noradrenaline
L-Norepinephrine
Levarterenol
Levoarterenol
Levonor
Levonoradrenaline
Levonorepinephrine
Levophed
Nor-Epirenan
Noradrenalin
Noradrenaline
Norartrinal
Norepinefrina
Norepinephrinum
Norepirenamine
Sympathin E
Chemical FormulaC8H11NO3
Average Molecular Mass169.178 g/mol
Monoisotopic Mass169.074 g/mol
CAS Registry Number51-41-2
IUPAC Name4-[(1R)-2-amino-1-hydroxyethyl]benzene-1,2-diol
Traditional Namenorepinephrine
SMILES[H][C@](O)(CN)C1=CC(O)=C(O)C=C1
InChI IdentifierInChI=1S/C8H11NO3/c9-4-8(12)5-1-2-6(10)7(11)3-5/h1-3,8,10-12H,4,9H2/t8-/m0/s1
InChI KeyInChIKey=SFLSHLFXELFNJZ-QMMMGPOBSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety.
KingdomOrganic compounds
Super ClassBenzenoids
ClassPhenols
Sub ClassBenzenediols
Direct ParentCatechols
Alternative Parents
Substituents
  • Catechol
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Aralkylamine
  • Monocyclic benzene moiety
  • 1,2-aminoalcohol
  • Secondary alcohol
  • Organic nitrogen compound
  • Aromatic alcohol
  • Hydrocarbon derivative
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Primary aliphatic amine
  • Organopnictogen compound
  • Organic oxygen compound
  • Amine
  • Alcohol
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginEndogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue Locations
  • Adipose Tissue
  • Adrenal Cortex
  • Adrenal Gland
  • Adrenal Medulla
  • Bladder
  • Brain
  • Central Nervous System
  • Epidermis
  • Fibroblasts
  • Gonads
  • Heart
  • Intestine
  • Kidney
  • Lymphocyte
  • Muscle
  • Nerve Cells
  • Neuron
  • Pancreas
  • Placenta
  • Platelet
  • Prostate
  • Skeletal Muscle
Pathways
NameSMPDB LinkKEGG Link
Catecholamine BiosynthesisSMP00012 map00350
Tyrosine MetabolismSMP00006 map00350
Applications
Biological Roles
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point217 dec°C
Boiling PointNot Available
Solubility849 mg/mL
LogP-1.24
Predicted Properties
PropertyValueSource
logP-0.68ChemAxon
pKa (Strongest Acidic)9.5ChemAxon
pKa (Strongest Basic)8.85ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area86.71 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity44.46 m³·mol⁻¹ChemAxon
Polarizability16.96 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
GC-MSGC-MS Spectrum - GC-MS (5 TMS)splash10-00di-1900000000-c9b4a0a230d610dd0e612014-06-16View Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-000l-4900000000-b0893c23c186c5f8a3442017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-00di-1900000000-c9b4a0a230d610dd0e612017-09-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-001i-7900000000-ce77a851a3951304f4d02017-07-27View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (3 TMS) - 70eV, Positivesplash10-0229-5974000000-c3ce7fc56442d79ae5b92017-10-06View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_1) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_3) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_4) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_1) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_2) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_3) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_4) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_5) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_6) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_7) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_2) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_3) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_4) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_5) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_6) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_7) - 70eV, PositiveNot Available2021-11-05View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_1) - 70eV, PositiveNot Available2021-11-05View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, N/A (Annotated)splash10-0udi-0900000000-5610e21bd478a4ca7bde2012-07-24View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, N/A (Annotated)splash10-0a6r-5900000000-5d7cd24a6af23a36af3a2012-07-24View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, N/A (Annotated)splash10-004i-9000000000-3c8de1511861fa1d028c2012-07-24View Spectrum
LC-MS/MSLC-MS/MS Spectrum - EI-B (HITACHI M-80) , Positivesplash10-000l-4900000000-b0893c23c186c5f8a3442012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-0udi-0900000000-11725b1d61843966aa7c2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-0udi-1900000000-6931e73a397f3917ad962012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-0a4i-3900000000-bddd6ee748aa9ebecb152012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-056r-9500000000-6abd3337785c1b5806682012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-004i-9100000000-ede02e0e3e74bdddc9f42012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-0udi-0900000000-11725b1d61843966aa7c2017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-0udi-1900000000-6931e73a397f3917ad962017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-0a4i-3900000000-918c4cbdffc5e02eafd52017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-056r-9500000000-6abd3337785c1b5806682017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-004i-9100000000-ede02e0e3e74bdddc9f42017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 40V, Positivesplash10-0pdi-9200000000-3d99ed9123eec62ff62d2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 30V, Positivesplash10-0a6r-9800000000-de86d31e5e71d67974832021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 40V, Positivesplash10-004i-9000000000-f80ee469d3be93674e922021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-0udi-4900000000-fcf1ba1ad34b038d9ecd2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 20V, Positivesplash10-0a4i-9700000000-a7986bc2f2986d323df12021-09-20View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0uk9-0900000000-3d6d08077184bc7a41e22017-06-28View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0f79-0900000000-470ddb022c86b9ee2fdc2017-06-28View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0zgr-7900000000-c1bd5e2d31685ca3b0c12017-06-28View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-014i-0900000000-9eabcf1f0c800fc62a372017-06-28View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0gi9-0900000000-2ff1cb280b5fe52546892017-06-28View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-4900000000-c16efed37585b9aac58a2017-06-28View Spectrum
1D NMR13C NMR Spectrum (1D, 125 MHz, H2O, experimental)Not Available2012-12-04View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, experimental)Not Available2012-12-04View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, H2O, experimental)Not Available2021-10-10View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, H2O, experimental)Not Available2021-10-10View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)Not Available2012-12-05View Spectrum
Toxicity Profile
Route of ExposureEndogenous, Ingestion, Dermal (contact)
Mechanism of ToxicityUremic toxins such as noradrenalin are actively transported into the kidneys via organic ion transporters (especially OAT3). Increased levels of uremic toxins can stimulate the production of reactive oxygen species. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) (2). Reactive oxygen species can induce several different DNA methyltransferases (DNMTs) which are involved in the silencing of a protein known as KLOTHO. KLOTHO has been identified as having important roles in anti-aging, mineral metabolism, and vitamin D metabolism. A number of studies have indicated that KLOTHO mRNA and protein levels are reduced during acute or chronic kidney diseases in response to high local levels of reactive oxygen species (3). Norepinephrine functions as a peripheral vasoconstrictor by acting on alpha-adrenergic receptors. It is also an inotropic stimulator of the heart and dilator of coronary arteries as a result of it's activity at the beta-adrenergic receptors.
MetabolismUremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces.
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesMainly used to treat patients in vasodilatory shock states such as septic shock and neurogenic shock and has shown a survival benefit over dopamine. Also used as a vasopressor medication for patients with critical hypotension.
Minimum Risk LevelNot Available
Health EffectsChronic exposure to uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.
SymptomsAs a uremic toxin, this compound can cause uremic syndrome. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Abnormal bleeding, such as bleeding spontaneously or profusely from a very minor injury can also occur. Heart problems, such as an irregular heartbeat, inflammation in the sac that surrounds the heart (pericarditis), and increased pressure on the heart can be seen in patients with uremic syndrome. Shortness of breath from fluid buildup in the space between the lungs and the chest wall (pleural effusion) can also be present.
TreatmentKidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored.
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDDB00368
HMDB IDHMDB00216
PubChem Compound ID439260
ChEMBL IDCHEMBL1437
ChemSpider ID388394
KEGG IDC00547
UniProt IDNot Available
OMIM ID
ChEBI ID18357
BioCyc IDNOREPINEPHRINE
CTD IDNot Available
Stitch IDNot Available
PDB IDLNR
ACToR IDNot Available
Wikipedia LinkNorepinephrine
References
Synthesis ReferenceNot Available
MSDST3D4154.pdf
General References
  1. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A: Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012 Jul;23(7):1258-70. doi: 10.1681/ASN.2011121175. Epub 2012 May 24. [22626821 ]
  2. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  3. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
  4. Ahlskog JE, Uitti RJ, Tyce GM, O'Brien JF, Petersen RC, Kokmen E: Plasma catechols and monoamine oxidase metabolites in untreated Parkinson's and Alzheimer's diseases. J Neurol Sci. 1996 Mar;136(1-2):162-8. [8815165 ]
  5. Rajda C, Bencsik K, Fuvesi J, Seres E, Vecsei L, Bergquist J: The norepinephrine level is decreased in the lymphocytes of long-term interferon-beta-treated multiple sclerosis patients. Mult Scler. 2006 Jun;12(3):265-70. [16764338 ]
  6. Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [9849813 ]
  7. Panholzer TJ, Beyer J, Lichtwald K: Coupled-column liquid chromatographic analysis of catecholamines, serotonin, and metabolites in human urine. Clin Chem. 1999 Feb;45(2):262-8. [9931050 ]
  8. Eklundh T, Eriksson M, Sjoberg S, Nordin C: Monoamine precursors, transmitters and metabolites in cerebrospinal fluid: a prospective study in healthy male subjects. J Psychiatr Res. 1996 May-Jun;30(3):201-8. [8884658 ]
  9. Takahashi S, Gjessing LR: A fluorometric method combined with thin layer chromatography for the determination of norepinephrine, epinephrine and dopamine in human urine. Clin Chim Acta. 1972 Feb;36(2):369-78. [5008799 ]
  10. Ross HA, van Gurp PJ, Willemsen JJ, Lenders JW, Tack CJ, Sweep FC: Transport within the interstitial space, rather than membrane permeability, determines norepinephrine recovery in microdialysis. J Pharmacol Exp Ther. 2006 Nov;319(2):840-6. Epub 2006 Aug 10. [16902052 ]
  11. Martinsons A, Rudzite V, Bratslavska O, Saulite V: The influence of kynurenine, neopterin, and norepinephrine on tubular epithelial cells and alveolar fibroblasts. Adv Exp Med Biol. 1999;467:347-52. [10721076 ]
  12. Lake CR, Sternberg DE, van Kammen DP, Ballenger JC, Ziegler MG, Post RM, Kopin IJ, Bunney WE: Schizophrenia: elevated cerebrospinal fluid norepinephrine. Science. 1980 Jan 18;207(4428):331-3. [7350667 ]
  13. Kaya M, Moriwaki Y, Ka T, Inokuchi T, Yamamoto A, Takahashi S, Tsutsumi Z, Tsuzita J, Oku Y, Yamamoto T: Plasma concentrations and urinary excretion of purine bases (uric acid, hypoxanthine, and xanthine) and oxypurinol after rigorous exercise. Metabolism. 2006 Jan;55(1):103-7. [16324927 ]
  14. Eisenhofer G, Keiser H, Friberg P, Mezey E, Huynh TT, Hiremagalur B, Ellingson T, Duddempudi S, Eijsbouts A, Lenders JW: Plasma metanephrines are markers of pheochromocytoma produced by catechol-O-methyltransferase within tumors. J Clin Endocrinol Metab. 1998 Jun;83(6):2175-85. [9626157 ]
  15. Fernqvist E, Linde B: Potent mental stress and insulin absorption in normal subjects. Diabetes Care. 1988 Sep;11(8):650-5. [3065003 ]
  16. Pasternak K, Dabrowski W, Wyciszczok T, Korycinska A, Dobija J, Biernacka J, Rzecki Z: The relationship between magnesium, epinephrine and norepinephrine blood concentrations during CABG with normovolemic hemodilution. Magnes Res. 2005 Dec;18(4):245-52. [16548139 ]
  17. Engelborghs S, Marescau B, De Deyn PP: Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease. Neurochem Res. 2003 Aug;28(8):1145-50. [12834252 ]
  18. Albanese J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C: Renal effects of norepinephrine in septic and nonseptic patients. Chest. 2004 Aug;126(2):534-9. [15302741 ]
  19. Shibahara J, Goto A, Niki T, Tanaka M, Nakajima J, Fukayama M: Primary pulmonary paraganglioma: report of a functioning case with immunohistochemical and ultrastructural study. Am J Surg Pathol. 2004 Jun;28(6):825-9. [15166677 ]
  20. Wanner A, Horvath G, Brieva JL, Kumar SD, Mendes ES: Nongenomic actions of glucocorticosteroids on the airway vasculature in asthma. Proc Am Thorac Soc. 2004;1(3):235-8. [16113440 ]
  21. Raw I, Schmidt BJ, Merzel J: Catecholamines and congenital pain insensitivity. Braz J Med Biol Res. 1984;17(3-4):271-9. [6085021 ]
  22. Zhu Y, Zhang W, Chen M, Liu N, Guo J: [Study on expression of norepinephrine and dopamine placental tissues of normal pregnancy and pregnancy induced hypertension syndrome]. Zhonghua Fu Chan Ke Za Zhi. 2002 Mar;37(3):142-5. [11953080 ]
  23. Pastuszak I, Drake R, Elbein AD. Kidney N-acetylgalactosamine (GalNAc)-1-phosphate kinase, a new pathway of GalNAc activation. J Biol Chem. 1996 Aug 23;271(34):20776-82.
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Thioesterase binding
Specific Function:
Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. The rank order of potency for agonists of this receptor is oxymetazoline > clonidine > epinephrine > norepinephrine > phenylephrine > dopamine > p-synephrine > p-tyramine > serotonin = p-octopamine. For antagonists, the rank order is yohimbine > phentolamine = mianserine > chlorpromazine = spiperone = prazosin > propanolol > alprenolol = pindolol.
Gene Name:
ADRA2A
Uniprot ID:
P08913
Molecular Weight:
48956.275 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory0.066 uMNot AvailableBindingDB 50029051
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Nyronen T, Pihlavisto M, Peltonen JM, Hoffren AM, Varis M, Salminen T, Wurster S, Marjamaki A, Kanerva L, Katainen E, Laaksonen L, Savola JM, Scheinin M, Johnson MS: Molecular mechanism for agonist-promoted alpha(2A)-adrenoceptor activation by norepinephrine and epinephrine. Mol Pharmacol. 2001 May;59(5):1343-54. [11306720 ]
  4. MacLennan SJ, Reynen PH, Martin RS, Eglen RM, Martin GR: Characterization of human recombinant alpha(2A)-adrenoceptors expressed in Chinese hamster lung cells using extracellular acidification rate changes. Br J Pharmacol. 2000 Apr;129(7):1333-8. [10742288 ]
  5. Hieble JP, Hehr A, Li YO, Ruffolo RR Jr: Molecular basis for the stereoselective interactions of catecholamines with alpha-adrenoceptors. Proc West Pharmacol Soc. 1998;41:225-8. [9836297 ]
  6. Nash DT: Alpha-adrenergic blockers: mechanism of action, blood pressure control, and effects of lipoprotein metabolism. Clin Cardiol. 1990 Nov;13(11):764-72. [1980236 ]
  7. Giovannoni MP, Ghelardini C, Vergelli C, Dal Piaz V: Alpha2-agonists as analgesic agents. Med Res Rev. 2009 Mar;29(2):339-68. doi: 10.1002/med.20134. [18680204 ]
  8. Gilsbach R, Hein L: Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Handb Exp Pharmacol. 2008;(184):261-88. [18064417 ]
  9. Munk SA, Lai RK, Burke JE, Arasasingham PN, Kharlamb AB, Manlapaz CA, Padillo EU, Wijono MK, Hasson DW, Wheeler LA, Garst ME: Synthesis and pharmacologic evaluation of 2-endo-amino-3-exo-isopropylbicyclo[2.2.1]heptane: a potent imidazoline1 receptor specific agent. J Med Chem. 1996 Mar 15;39(6):1193-5. [8632424 ]
  10. Reynen PH, Martin GR, Eglen RM, MacLennan SJ: Characterization of human recombinant alpha(2A)-adrenoceptors expressed in Chinese hamster lung cells using intracellular Ca(2+) changes: evidence for cross-talk between recombinant alpha(2A)- and native alpha(1)-adrenoceptors. Br J Pharmacol. 2000 Apr;129(7):1339-46. [10742289 ]
  11. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  12. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Protein homodimerization activity
Specific Function:
Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. The beta-2-adrenergic receptor binds epinephrine with an approximately 30-fold greater affinity than it does norepinephrine.
Gene Name:
ADRB2
Uniprot ID:
P07550
Molecular Weight:
46458.32 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Sanders VM: The role of norepinephrine and beta-2-adrenergic receptor stimulation in the modulation of Th1, Th2, and B lymphocyte function. Adv Exp Med Biol. 1998;437:269-78. [9666280 ]
  4. Tarizzo VI, Coppes RP, Dahlof C, Zaagsma J: Pre- and postganglionic stimulation-induced noradrenaline overflow is markedly facilitated by a prejunctional beta 2-adrenoceptor-mediated control mechanism in the pithed rat. Naunyn Schmiedebergs Arch Pharmacol. 1994 Jun;349(6):570-7. [7969507 ]
  5. Weinshenker D, Szot P, Miller NS, Palmiter RD: Alpha(1) and beta(2) adrenoreceptor agonists inhibit pentylenetetrazole-induced seizures in mice lacking norepinephrine. J Pharmacol Exp Ther. 2001 Sep;298(3):1042-8. [11504801 ]
  6. Mersmann HJ: Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J Anim Sci. 1998 Jan;76(1):160-72. [9464897 ]
  7. El-Armouche A, Eschenhagen T: Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev. 2009 Dec;14(4):225-41. doi: 10.1007/s10741-008-9132-8. [19110970 ]
  8. Gilsbach R, Hein L: Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Handb Exp Pharmacol. 2008;(184):261-88. [18064417 ]
  9. Carpene C, Galitzky J, Fontana E, Atgie C, Lafontan M, Berlan M: Selective activation of beta3-adrenoceptors by octopamine: comparative studies in mammalian fat cells. Naunyn Schmiedebergs Arch Pharmacol. 1999 Apr;359(4):310-21. [10344530 ]
  10. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN: Comparative pharmacology of human beta-adrenergic receptor subtypes--characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol. 2004 Feb;369(2):151-9. Epub 2004 Jan 17. [14730417 ]
  11. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  12. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Protein heterodimerization activity
Specific Function:
This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine (PE)-stimulated ERK signaling in cardiac myocytes.
Gene Name:
ADRA1B
Uniprot ID:
P35368
Molecular Weight:
56835.375 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory20.4 uMNot AvailableBindingDB 50029051
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Izzo NJ Jr, Tulenko TN, Colucci WS: Phorbol esters and norepinephrine destabilize alpha 1B-adrenergic receptor mRNA in vascular smooth muscle cells. J Biol Chem. 1994 Jan 21;269(3):1705-10. [8294418 ]
  4. Testa R, Guarneri L, Poggesi E, Simonazzi I, Taddei C, Leonardi A: Mediation of noradrenaline-induced contractions of rat aorta by the alpha 1B-adrenoceptor subtype. Br J Pharmacol. 1995 Feb;114(4):745-50. [7773533 ]
  5. Izzo NJ Jr, Colucci WS: Regulation of alpha 1B-adrenergic receptor half-life: protein synthesis dependence and effect of norepinephrine. Am J Physiol. 1994 Mar;266(3 Pt 1):C771-5. [8166240 ]
  6. Bishop MJ: Recent advances in the discovery of alpha1-adrenoceptor agonists. Curr Top Med Chem. 2007;7(2):135-45. [17266602 ]
  7. Gilsbach R, Hein L: Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Handb Exp Pharmacol. 2008;(184):261-88. [18064417 ]
  8. Pooput C, Rosemond E, Karpiak J, Deflorian F, Vilar S, Costanzi S, Wess J, Kirk KL: Structural basis of the selectivity of the beta(2)-adrenergic receptor for fluorinated catecholamines. Bioorg Med Chem. 2009 Dec 1;17(23):7987-92. doi: 10.1016/j.bmc.2009.10.015. Epub 2009 Oct 13. [19857969 ]
  9. Haenisch B, Walstab J, Herberhold S, Bootz F, Tschaikin M, Ramseger R, Bonisch H: Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline. Fundam Clin Pharmacol. 2010 Dec;24(6):729-39. doi: 10.1111/j.1472-8206.2009.00805.x. [20030735 ]
  10. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  11. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Protein homodimerization activity
Specific Function:
Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins.
Gene Name:
ADRA2C
Uniprot ID:
P18825
Molecular Weight:
49521.585 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory0.063 uMNot AvailableBindingDB 50029051
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Shreve PE, Toews ML, Bylund DB: Alpha 2A- and alpha 2C-adrenoceptor subtypes are differentially down-regulated by norepinephrine. Eur J Pharmacol. 1991 Jul 12;207(3):275-6. [1654268 ]
  4. Rump LC, Bohmann C, Schaible U, Schollhorn J, Limberger N: Alpha 2C-adrenoceptor-modulated release of noradrenaline in human right atrium. Br J Pharmacol. 1995 Nov;116(6):2617-24. [8590979 ]
  5. Bruck H, Schwerdtfeger T, Toliat M, Leineweber K, Heusch G, Philipp T, Nurnberg P, Brodde OE: Presynaptic alpha-2C adrenoceptor-mediated control of noradrenaline release in humans: genotype- or age-dependent? Clin Pharmacol Ther. 2007 Nov;82(5):525-30. Epub 2007 Apr 4. [17410123 ]
  6. Nash DT: Alpha-adrenergic blockers: mechanism of action, blood pressure control, and effects of lipoprotein metabolism. Clin Cardiol. 1990 Nov;13(11):764-72. [1980236 ]
  7. Gilsbach R, Hein L: Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Handb Exp Pharmacol. 2008;(184):261-88. [18064417 ]
  8. Munk SA, Lai RK, Burke JE, Arasasingham PN, Kharlamb AB, Manlapaz CA, Padillo EU, Wijono MK, Hasson DW, Wheeler LA, Garst ME: Synthesis and pharmacologic evaluation of 2-endo-amino-3-exo-isopropylbicyclo[2.2.1]heptane: a potent imidazoline1 receptor specific agent. J Med Chem. 1996 Mar 15;39(6):1193-5. [8632424 ]
  9. Haenisch B, Walstab J, Herberhold S, Bootz F, Tschaikin M, Ramseger R, Bonisch H: Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline. Fundam Clin Pharmacol. 2010 Dec;24(6):729-39. doi: 10.1111/j.1472-8206.2009.00805.x. [20030735 ]
  10. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  11. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Alpha1-adrenergic receptor activity
Specific Function:
This alpha-adrenergic receptor mediates its effect through the influx of extracellular calcium.
Gene Name:
ADRA1D
Uniprot ID:
P25100
Molecular Weight:
60462.205 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Cleary L, Slattery J, Bexis S, Docherty JR: Sympathectomy reveals alpha 1A- and alpha 1D-adrenoceptor components to contractions to noradrenaline in rat vas deferens. Br J Pharmacol. 2004 Nov;143(6):745-52. Epub 2004 Sep 27. [15451776 ]
  4. Kenny BA, Chalmers DH, Philpott PC, Naylor AM: Characterization of an alpha 1D-adrenoceptor mediating the contractile response of rat aorta to noradrenaline. Br J Pharmacol. 1995 Jul;115(6):981-6. [7582530 ]
  5. Testa R, Destefani C, Guarneri L, Poggesi E, Simonazzi I, Taddei C, Leonardi A: The alpha 1d-adrenoceptor subtype is involved in the noradrenaline-induced contractions of rat aorta. Life Sci. 1995;57(13):PL159-63. [7674815 ]
  6. Bishop MJ: Recent advances in the discovery of alpha1-adrenoceptor agonists. Curr Top Med Chem. 2007;7(2):135-45. [17266602 ]
  7. Gilsbach R, Hein L: Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Handb Exp Pharmacol. 2008;(184):261-88. [18064417 ]
  8. Forray C, Bard JA, Wetzel JM, Chiu G, Shapiro E, Tang R, Lepor H, Hartig PR, Weinshank RL, Branchek TA, et al.: The alpha 1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human alpha 1c subtype. Mol Pharmacol. 1994 Apr;45(4):703-8. [8183249 ]
  9. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  10. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Epinephrine binding
Specific Function:
Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. The rank order of potency for agonists of this receptor is clonidine > norepinephrine > epinephrine = oxymetazoline > dopamine > p-tyramine = phenylephrine > serotonin > p-synephrine / p-octopamine. For antagonists, the rank order is yohimbine > chlorpromazine > phentolamine > mianserine > spiperone > prazosin > alprenolol > propanolol > pindolol.
Gene Name:
ADRA2B
Uniprot ID:
P18089
Molecular Weight:
49565.8 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Gobbi M, Frittoli E, Mennini T: The modulation of [3H]noradrenaline and [3H]serotonin release from rat brain synaptosomes is not mediated by the alpha 2B-adrenoceptor subtype. Naunyn Schmiedebergs Arch Pharmacol. 1990 Oct;342(4):382-6. [1979424 ]
  4. Vizi ES, Katona I, Freund TF: Evidence for presynaptic cannabinoid CB(1) receptor-mediated inhibition of noradrenaline release in the guinea pig lung. Eur J Pharmacol. 2001 Nov 16;431(2):237-44. [11728431 ]
  5. Rudling JE, Richardson J, Evans PD: A comparison of agonist-specific coupling of cloned human alpha(2)-adrenoceptor subtypes. Br J Pharmacol. 2000 Nov;131(5):933-41. [11053214 ]
  6. Nash DT: Alpha-adrenergic blockers: mechanism of action, blood pressure control, and effects of lipoprotein metabolism. Clin Cardiol. 1990 Nov;13(11):764-72. [1980236 ]
  7. Gilsbach R, Hein L: Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Handb Exp Pharmacol. 2008;(184):261-88. [18064417 ]
  8. Haenisch B, Walstab J, Herberhold S, Bootz F, Tschaikin M, Ramseger R, Bonisch H: Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline. Fundam Clin Pharmacol. 2010 Dec;24(6):729-39. doi: 10.1111/j.1472-8206.2009.00805.x. [20030735 ]
  9. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  10. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Receptor signaling protein activity
Specific Function:
Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. This receptor binds epinephrine and norepinephrine with approximately equal affinity. Mediates Ras activation through G(s)-alpha- and cAMP-mediated signaling.
Gene Name:
ADRB1
Uniprot ID:
P08588
Molecular Weight:
51322.1 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory0.4 uMNot AvailableBindingDB 50029051
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]
  2. Mersmann HJ: Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J Anim Sci. 1998 Jan;76(1):160-72. [9464897 ]
  3. El-Armouche A, Eschenhagen T: Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev. 2009 Dec;14(4):225-41. doi: 10.1007/s10741-008-9132-8. [19110970 ]
  4. Gilsbach R, Hein L: Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Handb Exp Pharmacol. 2008;(184):261-88. [18064417 ]
  5. Adejare A, Gusovsky F, Padgett W, Creveling CR, Daly JW, Kirk KL: Syntheses and adrenergic activities of ring-fluorinated epinephrines. J Med Chem. 1988 Oct;31(10):1972-7. [2845082 ]
  6. Carpene C, Galitzky J, Fontana E, Atgie C, Lafontan M, Berlan M: Selective activation of beta3-adrenoceptors by octopamine: comparative studies in mammalian fat cells. Naunyn Schmiedebergs Arch Pharmacol. 1999 Apr;359(4):310-21. [10344530 ]
  7. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN: Comparative pharmacology of human beta-adrenergic receptor subtypes--characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol. 2004 Feb;369(2):151-9. Epub 2004 Jan 17. [14730417 ]
  8. Rochais F, Vilardaga JP, Nikolaev VO, Bunemann M, Lohse MJ, Engelhardt S: Real-time optical recording of beta1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. J Clin Invest. 2007 Jan;117(1):229-35. [17200720 ]
  9. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  10. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Protein homodimerization activity
Specific Function:
Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. Beta-3 is involved in the regulation of lipolysis and thermogenesis.
Gene Name:
ADRB3
Uniprot ID:
P13945
Molecular Weight:
43518.615 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Carpene C, Galitzky J, Collon P, Esclapez F, Dauzats M, Lafontan M: Desensitization of beta-1 and beta-2, but not beta-3, adrenoceptor-mediated lipolytic responses of adipocytes after long-term norepinephrine infusion. J Pharmacol Exp Ther. 1993 Apr;265(1):237-47. [8097243 ]
  4. Galitzky J, Carpene C, Lafontan M, Berlan M: [Specific stimulation of adipose tissue adrenergic beta 3 receptors by octopamine]. C R Acad Sci III. 1993;316(5):519-23. [8106131 ]
  5. Tamaoki J, Chiyotani A, Sakai N, Konno K: Stimulation of ciliary motility mediated by atypical beta-adrenoceptor in canine bronchial epithelium. Life Sci. 1993;53(20):1509-15. [8105356 ]
  6. Mersmann HJ: Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J Anim Sci. 1998 Jan;76(1):160-72. [9464897 ]
  7. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN: Comparative pharmacology of human beta-adrenergic receptor subtypes--characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol. 2004 Feb;369(2):151-9. Epub 2004 Jan 17. [14730417 ]
  8. Feve B, Emorine LJ, Lasnier F, Blin N, Baude B, Nahmias C, Strosberg AD, Pairault J: Atypical beta-adrenergic receptor in 3T3-F442A adipocytes. Pharmacological and molecular relationship with the human beta 3-adrenergic receptor. J Biol Chem. 1991 Oct 25;266(30):20329-36. [1682311 ]
  9. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  10. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Protein heterodimerization activity
Specific Function:
This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes.
Gene Name:
ADRA1A
Uniprot ID:
P35348
Molecular Weight:
51486.005 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory1.5 uMNot AvailableBindingDB 50029051
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Lachnit WG, Tran AM, Clarke DE, Ford AP: Pharmacological characterization of an alpha 1A-adrenoceptor mediating contractile responses to noradrenaline in isolated caudal artery of rat. Br J Pharmacol. 1997 Mar;120(5):819-26. [9138687 ]
  4. Burt RP, Chapple CR, Marshall I: The role of diacylglycerol and activation of protein kinase C in alpha 1A-adrenoceptor-mediated contraction to noradrenaline of rat isolated epididymal vas deferens. Br J Pharmacol. 1996 Jan;117(1):224-30. [8825367 ]
  5. Bishop MJ: Recent advances in the discovery of alpha1-adrenoceptor agonists. Curr Top Med Chem. 2007;7(2):135-45. [17266602 ]
  6. Adejare A, Gusovsky F, Padgett W, Creveling CR, Daly JW, Kirk KL: Syntheses and adrenergic activities of ring-fluorinated epinephrines. J Med Chem. 1988 Oct;31(10):1972-7. [2845082 ]
  7. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  8. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Phenylalanine 4-monooxygenase activity
Specific Function:
Not Available
Gene Name:
PAH
Uniprot ID:
P00439
Molecular Weight:
51861.565 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  3. Martinez A, Andersson KK, Haavik J, Flatmark T: EPR and 1H-NMR spectroscopic studies on the paramagnetic iron at the active site of phenylalanine hydroxylase and its interaction with substrates and inhibitors. Eur J Biochem. 1991 Jun 15;198(3):675-82. [1646718 ]
  4. Martinez A, Haavik J, Flatmark T: Cooperative homotropic interaction of L-noradrenaline with the catalytic site of phenylalanine 4-monooxygenase. Eur J Biochem. 1990 Oct 5;193(1):211-9. [2226440 ]
  5. Molinoff PB: The regulation of the noradrenergic neuron. J Psychiatr Res. 1974;11:339-45. [4156788 ]
  6. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  7. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Potassium channel regulator activity
Specific Function:
Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase.
Gene Name:
DRD2
Uniprot ID:
P14416
Molecular Weight:
50618.91 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC500.00000008 uMNot AvailableBindingDB 50029051
References
  1. Neumeyer JL, Guan JH, Niznik HB, Dumbrille-Ross A, Seeman P, Padmanabhan S, Elmaleh DR: Novel photoaffinity label for the dopamine D2 receptor: synthesis of 4-azido-5-iodo-2-methoxy-N-[1-(phenylmethyl)-4-piperidinyl] benzamide (iodoazidoclebopride, IAC) and the corresponding 125I-labeled analogue (125IAC). J Med Chem. 1985 Apr;28(4):405-7. [3156993 ]
  2. Seabrook GR, McAllister G, Knowles MR, Myers J, Sinclair H, Patel S, Freedman SB, Kemp JA: Depression of high-threshold calcium currents by activation of human D2 (short) dopamine receptors expressed in differentiated NG108-15 cells. Br J Pharmacol. 1994 Apr;111(4):1061-6. [8032591 ]
  3. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  4. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Monoamine transmembrane transporter activity
Specific Function:
Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis.
Gene Name:
SLC18A2
Uniprot ID:
Q05940
Molecular Weight:
55712.075 Da
References
  1. Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E: Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5166-71. [8643547 ]
  2. Gonzalez AM, Walther D, Pazos A, Uhl GR: Synaptic vesicular monoamine transporter expression: distribution and pharmacologic profile. Brain Res Mol Brain Res. 1994 Mar;22(1-4):219-26. [7912402 ]
  3. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  4. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Serotonin transmembrane transporter activity
Specific Function:
Involved in the transport of biogenic monoamines, such as serotonin, from the cytoplasm into the secretory vesicles of neuroendocrine and endocrine cells.
Gene Name:
SLC18A1
Uniprot ID:
P54219
Molecular Weight:
56256.71 Da
References
  1. Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E: Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5166-71. [8643547 ]
  2. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  3. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
G-protein coupled amine receptor activity
Specific Function:
Dopamine receptor whose activity is mediated by G proteins which activate adenylyl cyclase.
Gene Name:
DRD1
Uniprot ID:
P21728
Molecular Weight:
49292.765 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Dissociation50 uMNot AvailableBindingDB 50029051
References
  1. Brusniak MY, Pearlman RS, Neve KA, Wilcox RE: Comparative molecular field analysis-based prediction of drug affinities at recombinant D1A dopamine receptors. J Med Chem. 1996 Feb 16;39(4):850-9. [8632409 ]
  2. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  3. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Receptor binding
Specific Function:
Regulates the level of the neuromodulator D-serine in the brain. Has high activity towards D-DOPA and contributes to dopamine synthesis. Could act as a detoxifying agent which removes D-amino acids accumulated during aging. Acts on a variety of D-amino acids with a preference for those having small hydrophobic side chains followed by those bearing polar, aromatic, and basic groups. Does not act on acidic amino acids.
Gene Name:
DAO
Uniprot ID:
P14920
Molecular Weight:
39473.75 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC50>10000 uMNot AvailableBindingDB 50029051
References
  1. Katane M, Osaka N, Matsuda S, Maeda K, Kawata T, Saitoh Y, Sekine M, Furuchi T, Doi I, Hirono S, Homma H: Identification of novel D-amino acid oxidase inhibitors by in silico screening and their functional characterization in vitro. J Med Chem. 2013 Mar 14;56(5):1894-907. doi: 10.1021/jm3017865. Epub 2013 Feb 22. [23391306 ]
  2. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  3. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Phosphatidylinositol binding
Specific Function:
Acts either as the functional imidazoline-1 receptor (I1R) candidate or as a membrane-associated mediator of the I1R signaling. Binds numerous imidazoline ligands that induces initiation of cell-signaling cascades triggering to cell survival, growth and migration. Its activation by the agonist rilmenidine induces an increase in phosphorylation of mitogen-activated protein kinases MAPK1 and MAPK3 in rostral ventrolateral medulla (RVLM) neurons that exhibited rilmenidine-evoked hypotension (By similarity). Blocking its activation with efaroxan abolished rilmenidine-induced mitogen-activated protein kinase phosphorylation in RVLM neurons (By similarity). Acts as a modulator of Rac-regulated signal transduction pathways (By similarity). Suppresses Rac1-stimulated cell migration by interacting with PAK1 and inhibiting its kinase activity (By similarity). Also blocks Pak-independent Rac signaling by interacting with RAC1 and inhibiting Rac1-stimulated NF-kB response element and cyclin D1 promoter activation (By similarity). Inhibits also LIMK1 kinase activity by reducing LIMK1 'Tyr-508' phosphorylation (By similarity). Inhibits Rac-induced cell migration and invasion in breast and colon epithelial cells (By similarity). Inhibits lamellipodia formation, when overexpressed (By similarity). Plays a role in protection against apoptosis. Involved in association with IRS4 in the enhancement of insulin activation of MAPK1 and MAPK3. When overexpressed, induces a redistribution of cell surface ITGA5 integrin to intracellular endosomal structures.
Gene Name:
NISCH
Uniprot ID:
Q9Y2I1
Molecular Weight:
166627.105 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory>100 uMNot AvailableBindingDB 50029051
References
  1. Munk SA, Lai RK, Burke JE, Arasasingham PN, Kharlamb AB, Manlapaz CA, Padillo EU, Wijono MK, Hasson DW, Wheeler LA, Garst ME: Synthesis and pharmacologic evaluation of 2-endo-amino-3-exo-isopropylbicyclo[2.2.1]heptane: a potent imidazoline1 receptor specific agent. J Med Chem. 1996 Mar 15;39(6):1193-5. [8632424 ]
  2. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  3. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Vitamin d binding
Specific Function:
May have weak glycosidase activity towards glucuronylated steroids. However, it lacks essential active site Glu residues at positions 239 and 872, suggesting it may be inactive as a glycosidase in vivo. May be involved in the regulation of calcium and phosphorus homeostasis by inhibiting the synthesis of active vitamin D (By similarity). Essential factor for the specific interaction between FGF23 and FGFR1 (By similarity).The Klotho peptide generated by cleavage of the membrane-bound isoform may be an anti-aging circulating hormone which would extend life span by inhibiting insulin/IGF1 signaling.
Gene Name:
KL
Uniprot ID:
Q9UEF7
Molecular Weight:
116179.815 Da
References
  1. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  2. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Superoxide-generating nadph oxidase activity
Specific Function:
Constitutive NADPH oxidase which generates superoxide intracellularly upon formation of a complex with CYBA/p22phox. Regulates signaling cascades probably through phosphatases inhibition. May function as an oxygen sensor regulating the KCNK3/TASK-1 potassium channel and HIF1A activity. May regulate insulin signaling cascade. May play a role in apoptosis, bone resorption and lipolysaccharide-mediated activation of NFKB. May produce superoxide in the nucleus and play a role in regulating gene expression upon cell stimulation. Isoform 3 is not functional. Isoform 5 and isoform 6 display reduced activity.Isoform 4: Involved in redox signaling in vascular cells. Constitutively and NADPH-dependently generates reactive oxygen species (ROS). Modulates the nuclear activation of ERK1/2 and the ELK1 transcription factor, and is capable of inducing nuclear DNA damage. Displays an increased activity relative to isoform 1.
Gene Name:
NOX4
Uniprot ID:
Q9NPH5
Molecular Weight:
66930.995 Da
References
  1. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  2. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Sodium-independent organic anion transmembrane transporter activity
Specific Function:
Plays an important role in the excretion/detoxification of endogenous and exogenous organic anions, especially from the brain and kidney. Involved in the transport basolateral of steviol, fexofenadine. Transports benzylpenicillin (PCG), estrone-3-sulfate (E1S), cimetidine (CMD), 2,4-dichloro-phenoxyacetate (2,4-D), p-amino-hippurate (PAH), acyclovir (ACV) and ochratoxin (OTA).
Gene Name:
SLC22A8
Uniprot ID:
Q8TCC7
Molecular Weight:
59855.585 Da
References
  1. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297. [25041433 ]
  2. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]