Record Information
Version2.0
Creation Date2009-12-17 22:23:05 UTC
Update Date2014-12-24 20:26:18 UTC
Accession NumberT3D3662
Identification
Common NameRoquefortine
ClassSmall Molecule
DescriptionRoquefortine is found in milk and milk products. Roquefortine is a metabolite of Penicillium roquefortii, Penicillium commune, Penicillium cyclopium, Penicillium farinosum and many other Penicillium species Common constituent of blue cheese Roquefortine belongs to the family of Pyrroloindoles. These are compounds containing a pyrroloindole moiety, which is a tricyclic heterocycle which consists of a pyrrole ring fused to an indole.
Compound Type
  • Amide
  • Amine
  • Ester
  • Food Toxin
  • Fungal Toxin
  • Industrial/Workplace Toxin
  • Lachrymator
  • Metabolite
  • Mycotoxin
  • Natural Compound
  • Organic Compound
Chemical Structure
Thumb
Synonyms
Synonym
Roquefortine C
Chemical FormulaC22H23N5O2
Average Molecular Mass389.450 g/mol
Monoisotopic Mass389.185 g/mol
CAS Registry Number58735-64-1
IUPAC Name(4Z)-6-hydroxy-4-(1H-imidazol-5-ylmethylidene)-9-(2-methylbut-3-en-2-yl)-2,5,16-triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-5,10,12,14-tetraen-3-one
Traditional Name(4Z)-6-hydroxy-4-(3H-imidazol-4-ylmethylidene)-9-(2-methylbut-3-en-2-yl)-2,5,16-triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-5,10,12,14-tetraen-3-one
SMILES[H]\C(C1=CN=CN1)=C1\N=C(O)C2CC3(C(NC4=CC=CC=C34)N2C1=O)C(C)(C)C=C
InChI IdentifierInChI=1/C22H23N5O2/c1-4-21(2,3)22-10-17-18(28)25-16(9-13-11-23-12-24-13)19(29)27(17)20(22)26-15-8-6-5-7-14(15)22/h4-9,11-12,17,20,26H,1,10H2,2-3H3,(H,23,24)(H,25,28)/b16-9-
InChI KeyInChIKey=SPWSUFUPTSJWNG-SXGWCWSVNA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as pyrroloindoles. Pyrroloindoles are compounds containing a pyrroloindole moiety, which is a tricyclic heterocycle which consists of a pyrrole ring fused to an indole. Pyrrole is 5-membered ring consisting of four carbon atoms and one nitrogen atom. Indole is a bicyclic compound consisting of a six-membered benzene ring fused to a five-membered nitrogen-containing pyrrole ring.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassIndoles and derivatives
Sub ClassPyrroloindoles
Direct ParentPyrroloindoles
Alternative Parents
Substituents
  • Pyrroloindole
  • Alpha-amino acid or derivatives
  • Indole
  • Dihydroindole
  • Dioxopiperazine
  • 2,5-dioxopiperazine
  • Secondary aliphatic/aromatic amine
  • N-alkylpiperazine
  • 1,4-diazinane
  • Piperazine
  • Benzenoid
  • Heteroaromatic compound
  • Pyrrolidine
  • Pyrrole
  • Tertiary carboxylic acid amide
  • Azole
  • Imidazole
  • Secondary carboxylic acid amide
  • Amino acid or derivatives
  • Lactam
  • Carboxamide group
  • Secondary amine
  • Azacycle
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organic oxygen compound
  • Organic nitrogen compound
  • Organopnictogen compound
  • Organic oxide
  • Carbonyl group
  • Organonitrogen compound
  • Organooxygen compound
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Biological Properties
StatusDetected and Not Quantified
OriginEndogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder (13)
Experimental Properties
PropertyValue
Melting Point195 - 200°C
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.12 g/LALOGPS
logP2.48ALOGPS
logP1.24ChemAxon
logS-3.5ALOGPS
pKa (Strongest Acidic)3.32ChemAxon
pKa (Strongest Basic)7.57ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area93.61 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity112.02 m³·mol⁻¹ChemAxon
Polarizability41.5 ųChemAxon
Number of Rings5ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0006-0009000000-7866e3fc8e5fe3e2109e2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-006x-0009000000-b7e693f9dd6fa39c3bae2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-016r-9340000000-abf5ac70591c22dc22722016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-000i-0009000000-ebbc3981ceee0028fcef2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-004i-3493000000-1463e19758f42a16a4172016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a6r-5960000000-35389d6eecd5bb26cfb12016-08-03View Spectrum
Toxicity Profile
Route of ExposureOral, dermal, inhalation, and parenteral (contaminated drugs). (5)
Mechanism of ToxicityTremorgenic mycotoxins exert their toxic effects by interfering with neurotransmitter release, possibly by causing degeneration of nerve terminals. They are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse. Roquefortine C also interacts with different forms of the cytochromes. (1, 3)
MetabolismNot Available
Toxicity ValuesLD50: 15-20 mg/kg (Intraperitoneal, Mouse) (2)
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesRoquefortine C is a tremorgenic mycotoxin produced primarily by Penicillium roquefortii, but also by other Penicillium species. Penicillium roquefortii is used in the production of Roquefort and similar types of blue cheese, and has also been found growing in corn silage and mixed grains. Penicillium elaborated mycotoxins are well recognized as contaminants of many foods. These toxins, including mycophenolic acid (MPA), roquefortine (ROQ), penicillic acid (PA) and patulin (PAT) are reported to be toxic to several mammalian species. (7, 6)
Minimum Risk LevelNot Available
Health EffectsTremorgenic mycotoxins affect central nervous system activity. They cause a neurological disease of cattle known as "staggers syndrome". In severe cases roquefortine C can cause respiratory tract irritation, which can progress to ARDS/acute lung injury. Irritation or burns of the esophagus or gastrointestinal tract are also possible. Prostration, seizures, and death can also follow after absorption. (8, 2, 3)
SymptomsTremorgenic mycotoxins affect central nervous system activity, inducing neurologic symptoms including mental confusion, paralysis, tremors, seizures, and death. They cause a neurological disease of cattle known as "staggers syndrome", which is characterized by muscle tremors, hyperexcitability, convulsions and ataxia. Roquefortine C may also cause irritation of the eyes, skin, and respiratory tract. (8, 3)
TreatmentTo control severe tremors caused by tremorgenic mycotoxins, methocarbamol should be administered. Generalized seizures may be treated with diazepam followed by methocarbamol or a barbiturate such as pentobarbital sodium. Gastric lavage should be performed and activated charcoal administered to limit further absorption of toxins. (9)
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDHMDB30381
PubChem Compound ID6436831
ChEMBL IDNot Available
ChemSpider ID10696908
KEGG IDNot Available
UniProt IDNot Available
OMIM ID
ChEBI IDNot Available
BioCyc IDNot Available
CTD IDNot Available
Stitch IDNot Available
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDST3D3662.pdf
General References
  1. Aninat C, Hayashi Y, Andre F, Delaforge M: Molecular requirements for inhibition of cytochrome p450 activities by roquefortine. Chem Res Toxicol. 2001 Sep;14(9):1259-65. [11559041 ]
  2. Richard DJ, Schiavi B, Joullie MM: Synthetic studies of roquefortine C: synthesis of isoroquefortine C and a heterocycle. Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):11971-6. Epub 2004 May 12. [15141083 ]
  3. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
  4. Puls R, Ladyman E: Roquefortine toxicity in a dog. Can Vet J. 1988 Jul;29(7):569. [17423077 ]
  5. Peraica M, Domijan AM: Contamination of food with mycotoxins and human health. Arh Hig Rada Toksikol. 2001 Mar;52(1):23-35. [11370295 ]
  6. Yang X, Moffat K: Insights into specificity of cleavage and mechanism of cell entry from the crystal structure of the highly specific Aspergillus ribotoxin, restrictocin. Structure. 1996 Jul 15;4(7):837-52. [8805570 ]
  7. Haskell CF, Kennedy DO, Wesnes KA, Milne AL, Scholey AB: A double-blind, placebo-controlled, multi-dose evaluation of the acute behavioural effects of guarana in humans. J Psychopharmacol. 2007 Jan;21(1):65-70. Epub 2006 Mar 13. [16533867 ]
  8. Grond S, Sablotzki A: Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879-923. [15509185 ]
  9. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group. JAMA. 1991 Jun 26;265(24):3255-64. [2046107 ]
  10. Rumack BH POISINDEX(R) Information System Micromedex, Inc., Englewood, CO, 2010; CCIS Volume 143, edition expires Feb, 2010. Hall AH & Rumack BH (Eds): TOMES(R) Information System Micromedex, Inc., Englewood, CO, 2010; CCIS Volume 143, edition expires Feb, 2010.
  11. European Chemicals Bureau (2000). IUCLID Dataset, Glycollic acid (79-14-1).
  12. Schell MM. Tremorgenic mycotoxin intoxication. Veterinary Medicine. 2000.
  13. Rodricks, J.V., C. W. Hesseltine, and M. A. Mehlman (eds.). Mycotoxins in Human and Animal Health, Proceedings of Conference....Univ. of MD. October 4-8, 1976. Park Forest South, Illinois: Pathotox Publishers, Inc. 1977., p. 613
  14. Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Succinate-semialdehyde dehydrogenase binding
Specific Function:
Catalyzes the conversion of gamma-aminobutyrate and L-beta-aminoisobutyrate to succinate semialdehyde and methylmalonate semialdehyde, respectively. Can also convert delta-aminovalerate and beta-alanine.
Gene Name:
ABAT
Uniprot ID:
P80404
Molecular Weight:
56438.405 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular Weight:
51325.85 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular Weight:
55164.055 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA4
Uniprot ID:
P48169
Molecular Weight:
61622.645 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Transporter activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular Weight:
52145.645 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA6
Uniprot ID:
Q16445
Molecular Weight:
51023.69 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRB1
Uniprot ID:
P18505
Molecular Weight:
54234.085 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB2
Uniprot ID:
P47870
Molecular Weight:
59149.895 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-gated chloride ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB3
Uniprot ID:
P28472
Molecular Weight:
54115.04 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRD
Uniprot ID:
O14764
Molecular Weight:
50707.835 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRE
Uniprot ID:
P78334
Molecular Weight:
57971.175 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG1
Uniprot ID:
Q8N1C3
Molecular Weight:
53594.49 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRG2
Uniprot ID:
P18507
Molecular Weight:
54161.78 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG3
Uniprot ID:
Q99928
Molecular Weight:
54288.16 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. In the uterus, the function of the receptor appears to be related to tissue contractility. The binding of this pI subunit with other GABA(A) receptor subunits alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone.
Gene Name:
GABRP
Uniprot ID:
O00591
Molecular Weight:
50639.735 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-1 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR1
Uniprot ID:
P24046
Molecular Weight:
55882.91 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-2 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR2
Uniprot ID:
P28476
Molecular Weight:
54150.41 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRR3
Uniprot ID:
A8MPY1
Molecular Weight:
54271.1 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Transmembrane signaling receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRQ
Uniprot ID:
Q9UN88
Molecular Weight:
72020.875 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
G-protein coupled gaba receptor activity
Specific Function:
Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-dependent calcium-channels and modulates inositol phospholipid hydrolysis. Calcium is required for high affinity binding to GABA. Plays a critical role in the fine-tuning of inhibitory synaptic transmission. Pre-synaptic GABA receptor inhibits neurotransmitter release by down-regulating high-voltage activated calcium channels, whereas postsynaptic GABA receptor decreases neuronal excitability by activating a prominent inwardly rectifying potassium (Kir) conductance that underlies the late inhibitory postsynaptic potentials. Not only implicated in synaptic inhibition but also in hippocampal long-term potentiation, slow wave sleep, muscle relaxation and antinociception. Activated by (-)-baclofen, cgp27492 and blocked by phaclofen.Isoform 1E may regulate the formation of functional GABBR1/GABBR2 heterodimers by competing for GABBR2 binding. This could explain the observation that certain small molecule ligands exhibit differential affinity for central versus peripheral sites.
Gene Name:
GABBR1
Uniprot ID:
Q9UBS5
Molecular Weight:
108319.4 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
G-protein coupled gaba receptor activity
Specific Function:
Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-dependent calcium-channels and modulates inositol phospholipid hydrolysis. Plays a critical role in the fine-tuning of inhibitory synaptic transmission. Pre-synaptic GABA receptor inhibits neurotransmitter release by down-regulating high-voltage activated calcium channels, whereas postsynaptic GABA receptor decreases neuronal excitability by activating a prominent inwardly rectifying potassium (Kir) conductance that underlies the late inhibitory postsynaptic potentials. Not only implicated in synaptic inhibition but also in hippocampal long-term potentiation, slow wave sleep, muscle relaxation and antinociception.
Gene Name:
GABBR2
Uniprot ID:
O75899
Molecular Weight:
105820.52 Da
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Temperature-gated cation channel activity
Specific Function:
Receptor-activated non-selective cation channel involved in detection of pain and possibly also in cold perception and inner ear function (PubMed:25389312, PubMed:25855297). Has a central role in the pain response to endogenous inflammatory mediators and to a diverse array of volatile irritants, such as mustard oil, cinnamaldehyde, garlic and acrolein, an irritant from tears gas and vehicule exhaust fumes (PubMed:25389312, PubMed:20547126). Is also activated by menthol (in vitro)(PubMed:25389312). Acts also as a ionotropic cannabinoid receptor by being activated by delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana (PubMed:25389312). May be a component for the mechanosensitive transduction channel of hair cells in inner ear, thereby participating in the perception of sounds. Probably operated by a phosphatidylinositol second messenger system (By similarity).
Gene Name:
TRPA1
Uniprot ID:
O75762
Molecular Weight:
127499.88 Da
References
  1. Nilius B, Prenen J, Owsianik G: Irritating channels: the case of TRPA1. J Physiol. 2011 Apr 1;589(Pt 7):1543-9. doi: 10.1113/jphysiol.2010.200717. Epub 2010 Nov 15. [21078588 ]