Tmic
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2009-06-23 18:10:09 UTC
Update Date2014-12-24 20:24:44 UTC
Accession NumberT3D1846
Identification
Common NameFenpropathrin
ClassSmall Molecule
DescriptionFenpropathrin is a pyrethroid (type 1) insecticide. A pyrethroid is a synthetic chemical compound similar to the natural chemical pyrethrins produced by the flowers of pyrethrums (Chrysanthemum cinerariaefolium and C. coccineum). Pyrethroids are common in commercial products such as household insecticides and insect repellents. In the concentrations used in such products, they are generally harmless to human beings but can harm sensitive individuals. They are usually broken apart by sunlight and the atmosphere in one or two days, and do not significantly affect groundwater quality except for being toxic to fish. Insects with certain mutations in their sodium channel gene may be resistant to pyrethroid insecticides. (6, 5)
Compound Type
  • Ester
  • Ether
  • Household Toxin
  • Nitrile
  • Organic Compound
  • Pesticide
  • Pyrethroid
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
(+-)-fenpropathrin
2,2,3,3-Tetramethylcyclopropanecarboxylic acid cyano(3-phenoxyphenyl)methyl ester
Danimen
Danitol
Danitol fiori
Danitrol
Fenpropanate
Fenpropathrin, (+-)-isomer
Fenpropathrin, (r)-isomer
Fenpropathrin, (s)-isomer
Fenpropathrine
Herald
Kilumal
Meiothrin
Meothrin
Miothrin
Ortho danitol
RODY
Smash
TAME
Chemical FormulaC22H23NO3
Average Molecular Mass349.423 g/mol
Monoisotopic Mass349.168 g/mol
CAS Registry Number39515-41-8
IUPAC Namecyano(3-phenoxyphenyl)methyl 2,2,3,3-tetramethylcyclopropane-1-carboxylate
Traditional NameRody
SMILESCC1(C)C(C(=O)OC(C#N)C2=CC=CC(OC3=CC=CC=C3)=C2)C1(C)C
InChI IdentifierInChI=1S/C22H23NO3/c1-21(2)19(22(21,3)4)20(24)26-18(14-23)15-9-8-12-17(13-15)25-16-10-6-5-7-11-16/h5-13,18-19H,1-4H3
InChI KeyInChIKey=XQUXKZZNEFRCAW-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as diphenylethers. These are aromatic compounds containing two benzene rings linked to each other through an ether group.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassDiphenylethers
Direct ParentDiphenylethers
Alternative Parents
Substituents
  • Diphenylether
  • Diaryl ether
  • Benzyloxycarbonyl
  • Phenoxy compound
  • Phenol ether
  • Cyclopropanecarboxylic acid or derivatives
  • Carboxylic acid ester
  • Nitrile
  • Carbonitrile
  • Monocarboxylic acid or derivatives
  • Ether
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organopnictogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Organic nitrogen compound
  • Organic oxide
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Membrane
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
Applications
Biological Roles
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceYellow to brown liquid or solid (9).
Experimental Properties
PropertyValue
Melting Point47°C
Boiling PointNot Available
Solubility0.00033 mg/mL at 25°C [SHIU,WY et al. (1990)]
LogPNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.003 g/LALOGPS
logP5.24ALOGPS
logP4.85ChemAxon
logS-5.1ALOGPS
pKa (Strongest Acidic)10.62ChemAxon
pKa (Strongest Basic)-7.1ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area59.32 ŲChemAxon
Rotatable Bond Count6ChemAxon
Refractivity98.52 m³·mol⁻¹ChemAxon
Polarizability37.5 ųChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-0309000000-0b8bf0e2f0cbbe1cdc7bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0fb9-1915000000-5daae9be0a3966abf54fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-003r-9700000000-3f5a0f83bca058f8e7bbView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0002-0019000000-2ac2533677ffc3559eb8View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0002-0129000000-fcceee24fcc0851f1790View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-006x-5910000000-c222e81ab53f32f5255cView in MoNA
MSMass Spectrum (Electron Ionization)splash10-055e-9310000000-3f3f82abaab71f61940eView in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
Toxicity Profile
Route of ExposureInhalation (7) ; oral (7) ; dermal (7) ; eye contact (7).
Mechanism of ToxicityPyrethroids exert their effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. They appear to bind to the membrane lipid phase in the immediate vicinity of the sodium channel, thus modifying the channel kinetics. This blocks the closing of the sodium gates in the nerves, and thus prolongs the return of the membrane potential to its resting state. The repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential produces effects quite similar to those produced by DDT, leading to hyperactivity of the nervous system which can result in paralysis and/or death. Other mechanisms of action of pyrethroids include antagonism of gamma-aminobutyric acid (GABA)-mediated inhibition, modulation of nicotinic cholinergic transmission, enhancement of noradrenaline release, and actions on calcium ions. (2, 7)
MetabolismFenpropathrin has been shown to be well absorbed after oral administration, extensively metabolized, and eliminated as polar conjugates in urine. The main route of metabolism was, as anticipated, via hydrolysis of the ester linkage. The cyclopropane-carboxylic acid moiety was subsequently excreted via the urine as the glucuronide conjugate. (7)
Toxicity ValuesLD50: 70.6 mg/kg (Oral, Rat) (4)
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesPyrethroids are used as insecticides. (7)
Minimum Risk LevelNot Available
Health EffectsAt high doses, signs of poisoning attributable to fenpropathrin include profuse salivation and pulmonary edema, clonic seizures, opisthotonos (i.e., the spine is bent forward such that a supine body rests on its head and heels), coma, and death. At lower doses, commonly observed effects include paresthesia and erythema. (8)
SymptomsFollowing dermal exposure to fenpropathrin, feelings of numbness, itching, burning, stinging, tingling, or warmth may occur, that could last for a few hours. Dizziness, headache, nausea, muscle twitching, reduced energy, and changes in awareness can result from inhalation or ingestion of large amounts of fenpropathrine. Paralysis can occur after exposure. (7)
TreatmentFollowing oral exposure, the treatment is symptomatic and supportive and includes monitoring for the development of hypersensitivity reactions with respiratory distress. Provide adequate airway management when needed. Gastric decontamination is usually not required unless the pyrethrin product is combined with a hydrocarbon. Following inhalation exposure, move patient to fresh air. monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with inhaled beta2 agonist and oral or parenteral corticosteroids. In case of eye exposure, irrigate exposed eyes with copious amounts of room temperature water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist, the patient should be seen in a health care facility. If the contamination occurs through dermal exposure, remove contaminated clothing and wash exposed area thoroughly with soap and water. A physician may need to examine the area if irritation or pain persists. Vitamin E topical application is highly effective in relieving parenthesis. (3)
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDNot Available
PubChem Compound ID47326
ChEMBL IDCHEMBL522994
ChemSpider ID43074
KEGG IDC18411
UniProt IDNot Available
OMIM ID
ChEBI ID39353
BioCyc IDCPD-68
CTD IDC044267
Stitch IDFenpropathrin
PDB IDNot Available
ACToR ID6420
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDST3D1846.pdf
General References
  1. Leng G, Lewalter J, Rohrig B, Idel H: The influence of individual susceptibility in pyrethroid exposure. Toxicol Lett. 1999 Jun 30;107(1-3):123-30. [10414789 ]
  2. Hayes WJ Jr. and Laws ER Jr. (eds) (1991). Handbook of Pesticide Toxicology. Volume 3. Classes of Pesticides. New York, NY: Academic Press, Inc.
  3. Rumack BH (2009). POISINDEX(R) Information System. Englewood, CO: Micromedex, Inc. CCIS Volume 141, edition expires Aug, 2009.
  4. Tomlin CDS (ed) (1994). The Pesticide Manual - World Compendium. 10th ed. Surrey, UK: The British Crop Protection Council.
  5. Wikipedia. Tralomethrin. Last Updated 22 January 2009. [Link]
  6. Wikipedia. Pyrethroid. Last Updated 8 June 2009. [Link]
  7. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  8. Das R et al. Worker Illness Related to Ground Application of Pesticide --- Kern County, California. MMWR 2006;55(17):486-8 [Link]
  9. FAO/WHO (2003). Joint FAO/WHO Meeting on Pesticide Residues: Fenpropanthrin. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN1A
Uniprot ID:
P35498
Molecular Weight:
228969.49 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Tetrodotoxin-resistant channel that mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms.
Gene Name:
SCN10A
Uniprot ID:
Q9Y5Y9
Molecular Weight:
220623.605 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant sodium channel isoform. Also involved, with the contribution of the receptor tyrosine kinase NTRK2, in rapid BDNF-evoked neuronal depolarization.
Gene Name:
SCN11A
Uniprot ID:
Q9UI33
Molecular Weight:
204919.66 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN2A
Uniprot ID:
Q99250
Molecular Weight:
227972.64 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN3A
Uniprot ID:
Q9NY46
Molecular Weight:
226291.905 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. This sodium channel may be present in both denervated and innervated skeletal muscle.
Gene Name:
SCN4A
Uniprot ID:
P35499
Molecular Weight:
208059.175 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity involved in sa node cell action potential
Specific Function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels.
Gene Name:
SCN5A
Uniprot ID:
Q14524
Molecular Weight:
226937.475 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN7A
Uniprot ID:
Q01118
Molecular Weight:
193491.605 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. In macrophages and melanoma cells, isoform 5 may participate in the control of podosome and invadopodia formation.
Gene Name:
SCN8A
Uniprot ID:
Q9UQD0
Molecular Weight:
225278.005 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-sensitive Na(+) channel isoform. Plays a role in pain mechanisms, especially in the development of inflammatory pain (By similarity).
Gene Name:
SCN9A
Uniprot ID:
Q15858
Molecular Weight:
226370.175 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity involved in purkinje myocyte action potential
Specific Function:
Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-1 can modulate multiple alpha subunit isoforms from brain, skeletal muscle, and heart. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons.Isoform 2: Cell adhesion molecule that plays a critical role in neuronal migration and pathfinding during brain development. Stimulates neurite outgrowth.
Gene Name:
SCN1B
Uniprot ID:
Q07699
Molecular Weight:
24706.955 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
Specific Function:
Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity).
Gene Name:
SCN2B
Uniprot ID:
O60939
Molecular Weight:
24325.69 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
Specific Function:
Modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (By similarity).
Gene Name:
SCN3B
Uniprot ID:
Q9NY72
Molecular Weight:
24702.08 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
Specific Function:
Modulates channel gating kinetics. Causes negative shifts in the voltage dependence of activation of certain alpha sodium channels, but does not affect the voltage dependence of inactivation. Modulates the suceptibility of the sodium channel to inhibition by toxic peptides from spider, scorpion, wasp and sea anemone venom.
Gene Name:
SCN4B
Uniprot ID:
Q8IWT1
Molecular Weight:
24968.755 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Signal transducer activity
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium.
Gene Name:
ATP2C1
Uniprot ID:
P98194
Molecular Weight:
100576.42 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium.
Gene Name:
ATP2C2
Uniprot ID:
O75185
Molecular Weight:
103186.475 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Protein homodimerization activity
Specific Function:
Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A1
Uniprot ID:
O14983
Molecular Weight:
110251.36 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
S100 protein binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle.
Gene Name:
ATP2A2
Uniprot ID:
P16615
Molecular Weight:
114755.765 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A3
Uniprot ID:
Q93084
Molecular Weight:
113976.23 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Peptidase activity
Specific Function:
Responsible for the proteolytic processing of the amyloid precursor protein (APP). Cleaves at the N-terminus of the A-beta peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of beta-cleaved soluble APP, and a corresponding cell-associated C-terminal fragment which is later released by gamma-secretase.
Gene Name:
BACE1
Uniprot ID:
P56817
Molecular Weight:
55710.28 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC502.05 uMNVS_ENZ_hBACENovascreen
AC507.70 uMNVS_ENZ_hBACENovascreen
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Ligand-activated transcription factor. Receptor for bile acids such as chenodeoxycholic acid, lithocholic acid and deoxycholic acid. Represses the transcription of the cholesterol 7-alpha-hydroxylase gene (CYP7A1) through the induction of NR0B2 or FGF19 expression, via two distinct mechanisms. Activates the intestinal bile acid-binding protein (IBABP). Activates the transcription of bile salt export pump ABCB11 by directly recruiting histone methyltransferase CARM1 to this locus.
Gene Name:
NR1H4
Uniprot ID:
Q96RI1
Molecular Weight:
55913.915 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC503.12 uMOT_SRC1_SRC1FXR_0480Odyssey Thera
AC505.21 uMOT_SRC1_SRC1FXR_1440Odyssey Thera
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes.
Gene Name:
NR1I2
Uniprot ID:
O75469
Molecular Weight:
49761.245 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC503.90 uMATG_PXRE_CISAttagene
AC503.62 uMATG_PXRE_CISAttagene
AC504.59 uMNCGC_PXR_Agonist_humanNCGC
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Platelet-derived growth factor binding
Specific Function:
Collagen type III occurs in most soft connective tissues along with type I collagen. Involved in regulation of cortical development. Is the major ligand of GPR56 in the developing brain and binding to GPR56 inhibits neuronal migration and activates the RhoA pathway by coupling GPR56 to GNA13 and possibly GNA12.
Gene Name:
COL3A1
Uniprot ID:
P02461
Molecular Weight:
138564.005 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.44 uMBSK_hDFCGF_CollagenIII_upBioSeek
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Cleaves collagens of types I, II, and III at one site in the helical domain. Also cleaves collagens of types VII and X. In case of HIV infection, interacts and cleaves the secreted viral Tat protein, leading to a decrease in neuronal Tat's mediated neurotoxicity.
Gene Name:
MMP1
Uniprot ID:
P03956
Molecular Weight:
54006.61 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.44 uMBSK_hDFCGF_MMP1_upBioSeek
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Primary amine oxidase activity
Specific Function:
Important in cell-cell recognition. Appears to function in leukocyte-endothelial cell adhesion. Interacts with integrin alpha-4/beta-1 (ITGA4/ITGB1) on leukocytes, and mediates both adhesion and signal transduction. The VCAM1/ITGA4/ITGB1 interaction may play a pathophysiologic role both in immune responses and in leukocyte emigration to sites of inflammation.
Gene Name:
VCAM1
Uniprot ID:
P19320
Molecular Weight:
81275.43 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.44 uMBSK_hDFCGF_VCAM1_upBioSeek
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Vitamin d3 25-hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide (PubMed:11159812). Catalyzes 4-beta-hydroxylation of cholesterol. May catalyze 25-hydroxylation of cholesterol in vitro (PubMed:21576599).
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular Weight:
57342.67 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.46 uMCLZD_CYP3A4_6CellzDirect
AC505.13 uMCLZD_CYP3A4_48CellzDirect
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Steroid hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular Weight:
55627.365 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.70 uMCLZD_CYP2C9_48CellzDirect
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Steroid binding
Specific Function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX-alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate. Is also able to catalyze the glucuronidation of 17beta-estradiol, 17alpha-ethinylestradiol, 1-hydroxypyrene, 4-methylumbelliferone, 1-naphthol, paranitrophenol, scopoletin, and umbelliferone. Isoform 2 lacks transferase activity but acts as a negative regulator of isoform 1.
Gene Name:
UGT1A1
Uniprot ID:
P22309
Molecular Weight:
59590.91 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.71 uMCLZD_UGT1A1_48CellzDirect
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Iron ion binding
Specific Function:
Catalyzes the conversion of 25-hydroxyvitamin D3 (25(OH)D) to 1-alpha,25-dihydroxyvitamin D3 (1,25(OH)2D) plays an important role in normal bone growth, calcium metabolism, and tissue differentiation.
Gene Name:
CYP27B1
Uniprot ID:
O15528
Molecular Weight:
56503.475 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC506.80 uMATG_VDRE_CISAttagene
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Recruited to promoters via its interaction with BAZ1B/WSTF which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.
Gene Name:
VDR
Uniprot ID:
P11473
Molecular Weight:
48288.64 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC506.81 uMATG_VDRE_CISAttagene
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Steroid hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular Weight:
56277.81 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC507.70 uMCLZD_CYP2B6_6CellzDirect
AC508.64 uMCLZD_CYP2B6_24CellzDirect
AC508.25 uMCLZD_CYP2B6_48CellzDirect
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Steroid hydroxylase activity
Specific Function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular Weight:
55930.545 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC509.41 uMNVS_ADME_hCYP2C19Novascreen
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]