Record Information
Version2.0
Creation Date2009-07-05 03:31:24 UTC
Update Date2014-12-24 20:25:43 UTC
Accession NumberT3D2571
Identification
Common NameAcetaminophen
ClassSmall Molecule
DescriptionAcetaminophen, also known as paracetamol, is commonly used for its analgesic and antipyretic effects. Its therapeutic effects are similar to salicylates, but it lacks anti-inflammatory, antiplatelet, and gastric ulcerative effects. The excellent tolerability of therapeutic doses of paracetamol (acetaminophen) is a major factor in the very wide use of the drug. The major problem in the use of paracetamol is its hepatotoxicity after an overdose. Hepatotoxicity has also been reported after therapeutic doses, but critical analysis indicates that most patients with alleged toxicity from therapeutic doses have taken overdoses. Importantly, prospective studies indicate that therapeutic doses of paracetamol are an unlikely cause of hepatotoxicity in patients who ingest moderate to large amounts of alcohol. (7). Single doses of paracetamol are effective analgesics for acute postoperative pain and give rise to few adverse effects. (8). Acetaminophen (AAP) overdose and the resulting hepatotoxicity is an important clinical problem. In addition, AAP is widely used as a prototype hepatotoxin to study mechanisms of chemical-induced cell injury and to test the hepatoprotective potential of new drugs and herbal medicines. Because of its importance, the mechanisms of AAP-induced liver cell injury have been extensively investigated and controversially discussed for many years. (9).
Compound Type
  • Amide
  • Amine
  • Analgesic, Non-Narcotic
  • Antipyretic
  • Drug
  • Food Toxin
  • Metabolite
  • Organic Compound
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
4'-Hydroxyacetanilide
4-(Acetylamino)phenol
4-Acetamidophenol
4-Acetaminophenol
4-Hydroxyacetanilide
4-Hydroxyanilid kyseliny octove
A-Per
A.F. Anacin
Abenol
Abensanil
Abrol
Abrolet
Acamol
Accu-Tap
Acenol
Acephen
Acertol
Aceta Elixir
Aceta Tablets
Acetagesic
Acetalgin
Acetaminofen
Acetaminophen Uniserts
Acetaminophene
Acetamol
Acetofen
Actamin
Actamin Extra
Actamin Super
Actifed Plus
Actimol
Actimol Chewable Tablets
Actimol Children'S Suspension
Actimol Infants' Suspension
Actimol Junior Strength Caplets
Actron
Afebrin
Afebryl
Aferadol
Algesidal
Algina
Algomol
Algotropyl
Allay
alpha-Per
Alpiny
Alpinyl
Alvedon
Amadil
Aminofen
Aminofen Max
Anacin-3
Anacin-3 Extra Strength
Anadin dla dzieci
Anaflon
Analter
Anapap
Andox
Anelix
Anexsia
Anexsia 10/660
Anexsia 5/325
Anexsia 7.5/325
Anexsia 7.5/650
Anhiba
Anoquan
Anti-Algos
Antidol
Apacet
Apacet Capsules
Apacet Elixir
Apacet Extra Strength Caplets
Apacet Extra Strength Tablets
Apacet Regular Strength Tablets
Apadon
Apamid
Apamide
APAP
Apitrelal
Apo-Acetaminophen
Arfen
Asetam
Asomal
Aspac
Aspirin Free Anacin Maximum Strength Caplets
Aspirin Free Anacin Maximum Strength Gel Caplets
Aspirin Free Anacin Maximum Strength Tablets
Aspirin-Free Anacin
Aspirin-Free Excedrin Caplets
Asplin
Atasol Caplets
Atasol Drops
Atasol Forte Caplets
Atasol Forte Tablets
Atasol Oral Solution
Atasol Tablets
Atralidon
Babikan
Bacetamol
Bancap
Bancap Hc
Banesin
Bayer Select Allergy-Sinus
Bayer Select Head Cold
Bayer Select Headache Pain
Bayer Select Maximum Strength Headache Pain Relief Formula
Bayer Select Menstrual Multi-Symptom
Bayer Select Sinus Pain Relief
Ben-u-ron
Benmyo
Bickie-mol
Biocetamol
Bucet
Butalbital
Butapap
Cadafen
Calapol
Calmanticold
Calpol
Capital with Codeine
Captin
Causalon
Cefalex
Cetadol
Children'S Acetaminophen Elixir Drops
Children'S Acetaminophen Oral Solution
Children'S Tylenol Chewable
Claradol Codeine
Clixodyne
Co-Gesic
Cod-Acamol Forte
Codabrol
Codalgin
Codapane
Codicet
Codisal
Codisal Forte
Codoliprane
Codral Pain Relief
Cofamol
Conacetol
Contac Cough & Sore Throat Formula
Contra-Schmerz P
Coricidin
Coricidin D
Coricidin Sinus
Cosutone
Croix Blanche
Cuponol
Curadon
Curpol
Custodial
Dafalgan
Dapa X-S
Darocet
Darvocet
Darvocet-N 50
Datril
Datril Extra-Strength
Daygrip
Demilets
Deminofen
Democyl
Demogripal
Desfebre
Dhamol
Dhc Plus
Dial-a-gesic
Dial-alpha-gesic
Dimindol
Dirox
Disprol
Dol-Stop
Dolcor
Dolefin
Dolegrippin
Dolene Ap-65
Dolgesic
Doliprane
Dolko
Dolofugin
Doloreduct
Dolorfug
Dolorol Forte
Dolorstop
Dolotec
Dolprone
Dorocoff
Dresan
Dristan Cold No Drowsiness
Dristancito
Duracetamol
Duradyne Dhc
Durapan
Dymadon
Dymadon Co
Dymadon Forte
Dypap
Ecosetol
Elixodyne
Empracet
Endecon
Enelfa
Eneril
Esgic
Esgic-Plus
Eu-Med
Excedrin
Excedrin Caplets
Excedrin Extra Strength Caplets
Excipain
Exdol
Exdol Strong
Fanalgic
Farmadol
Febranine
Febrectal
Febrectol
Febrex
Febricet
Febridol
Febrilix
Febrin
Febrinol
Febro-Gesic
Febrolin
Femcet
Fendon
Fensum
Fepanil
Feverall
Feverall Junior Strength
Feverall Sprinkle Caps Junior Strength
Fevor
Finimal
Finiweh
Fioricet
Fluparmol
Fortalidon P
Freka-cetamol
Gattaphen T
Gelocatil
Geluprane
Genapap
Genapap Children'S Elixir
Genapap Children'S Tablets
Genapap Extra Strength Caplets
Genapap Extra Strength Tablets
Genapap Regular Strength Tablets
Genebs
Genebs Extra Strength Caplets
Genebs Regular Strength Tablets
Genebs X-Tra
Geralgine-P
Gripin Bebe
Grippostad
Gynospasmine
Hedex
Helon N
Homoolan
Hy-Phen
Hycomine Compound
Hydrocet
Ildamol
Inalgex
Infadrops
Infants' Feverall
Influbene N
Injectapap
Intensin
Janupap
Junior Disprol
Kataprin
Kinder Finimal
Korum
Kratofin simplex
Labamol
Lekadol
Lemgrip
Lemsip
Lestemp
Liquagesic
Liquigesic Co
Liquiprin
Liquiprin Children'S Elixir
Liquiprin Infants Drops
Lonarid
Lonarid Mono
Lorcet-Hd
Lortab
Lupocet
Lyteca
Lyteca Syrup
Magnidol
Malex N
Malgis
Malidens
Maxadol
Medigesic Plus
Medinol Paediatric
Medocodene
Melabon Infantil
Mexalen
Midol Maximum Strength
Midol PM Night Time Formula
Midol Regular Strength
Midol Teen Formula
Migraleve Yellow
Minafen
Minoset
Miralgin
Momentum
Mono Praecimed
Multin
N-(4-Hydroxyphenyl)acetamide
N-Acetyl-4-aminophenol
N-Acetyl-p-aminophenol
Naldegesic
NAPA
Napafen
Napap
Naprinol
Nealgyl
Nebs
Neo-Fepramol
NeoCitran
Neodol
Neodolito
Neopap
Neotrend
Neuridon
New Cortal for Children
NilnOcen
Nina
No-Febril
Nobedon
Nodolex
Noral
Norcet
Norco
O-Acetaminophenol
Ofirmev
Oltyl
Oralgan
Oraphen-PD
Ortensan
Oxycet
Oxycocet
Oxycodone 2.5/Apap 500
Oxycodone 5/Apap 500
p-(Acetylamino)phenol
p-Acetamidophenol
p-Acetaminophenol
p-Acetylaminophenol
p-Hydroxyacetanilide
p-Hydroxyphenolacetamide
Paceco
Pacemo
Pacemol
Pacet
Pacimol
Paedialgon
Paedol
Painex
Paldesic
Pamol
Panacete
Panadeine
Panadeine Co
Panadiene
Panado-Co
Panado-Co Caplets
Panadol
Panadol Extra Strength
Panadol Junior Strength Caplets
Panadol Maximum Strength Caplets
Panadol Maximum Strength Tablets
Panaleve
Panamax
Panasorb
Panasorbe
Panets
Panex
Panodil
Panofen
Pantalgin
Papa-Deine #3
Papa-Deine #4
Para-Suppo
Para-Tabs
Paracemol
Paracenol
Paracet
Paracetamol
Paracetamol AL
Paracetamol Antipanin P
Paracetamol Basics
Paracetamol BC
Paracetamol DC
Paracetamol Dr. Schmidgall
Paracetamol Fecofar
Paracetamol Genericon
Paracetamol Hanseler
Paracetamol Harkley
Paracetamol Heumann
Paracetamol Hexal
Paracetamol Italfarmaco
Paracetamol Nycomed
Paracetamol PB
Paracetamol Raffo
Paracetamol Ratiopharm
Paracetamol Rosch
Paracetamol Saar
Paracetamol SmithKline Beecham
Paracetamol Stada
Paracetamol von ct
Paracetamol Winthrop
Paracetamole
Paracetamolo
Paracetamolum
Paracetanol
Paracetol
Paracin
Paracod
Paracodol
Parador
Paradrops
Parakapton
Parake
Paralen
Paralief
Paralink
Paralyoc
Paramol
Paramolan
Paranox
Parapan
Parasedol
Parasin
Paraspen
Parcetol
Parelan
Parmol
Parogal
Paroma
Pasolind
Pasolind N
PCM Paracetamol Lichtenstein
Pe-Tam
Pediapirin
Pediatrix
Pedric
Percocet
Percocet-5
Percocet-Demi
Percogesic with Codeine
Perdolan Mono
Phenaphen
Phenaphen Caplets
Phenaphen W/Codeine
Phendon
Phenipirin
Phogoglandin
Phrenilin
Phrenilin Forte
Pinex
Piramin
Pirinasol
Plicet
Polmofen
Predimol
Predualito
Prestwick_13
Prodol
Prompt
Prontina
Propacet
Propacet 100
Proval #3
Puernol
Pulmofen
Pyregesic-C
Pyrigesic
Pyrinazine
Pyromed
Quiet World
Redutemp
Reliv
Remedol
Rhinex D-Lay Tablets
Rivalgyl
Robigesic
Robitussin Night Relief
Rockamol Plus
Rounox
Roxicet
Roxicet 5/500
Roxilox
RubieMol
Rubophen
Rupemol
Salzone
Sanicet
Sanicopyrine
Scanol
Scentalgyl
Scherzatabletten Rezeptur 534
Schmerzex
Sedalito
Sedapap
Semolacin
Servigesic
Seskamol
Setakop
Setamol
Setol
Sifenol
Sinaspril
Sine-Off Sinus Medicine Caplets
Sinedol
Sinmol
Sinubid
SK-Apap
Snaplets-FR
Spalt fur die nacht
Spalt N
St Joseph Aspirin-Free
St Joseph Aspirin-Free for Children
St. Joseph Cold Tablets for Children
St. Joseph Fever Reducer
Stanback
Stopain
Sudafed Severe Cold Formula
Sudafed Sinus
Sunetheton
Supac
Supadol mono
Supofen
Suppap
Suppap-120
Suppap-325
Suppap-650
Supramol-M
Synalgos-Dc-A
Tabalgin
Tachiprina
Talacen
Tapanol
Tapanol Extra Strength Caplets
Tapanol Extra Strength Tablets
Tapar
Tavist Allergy/Sinus/Headache
Tazamol
Temlo
Tempanal
Tempra
Tempra Caplets
Tempra Chewable Tablets
Tempra D.S
Tempra Drops
Tempra Syrup
Tencon
Termacet
Termalgin
Termalgine
Termofren
TheraFlu
Tibinide
Tibizide
Tiffy
Tisin
Tisiodrazida
Titralgan
Tizide
Tocris-1706
Toximer P
Tralgon
Treupel mon
Treupel N
Treuphadol
Triad
Triaminic Sore Throat Formula
Triaprin
Tricoton
Tussapap
Tycolet
TYL
Tylenol
Tylenol Allergy Sinus
Tylenol Arthritis Extended Relief
Tylenol Caplets
Tylenol Children'S Chewable Tablets
Tylenol Children'S Elixir
Tylenol Children'S Suspension Liquid
Tylenol Drops
Tylenol Elixir
Tylenol Extra Strength Adult Liquid Pain Reliever
Tylenol Extra Strength Caplets
Tylenol Extra Strength Gelcaps
Tylenol Extra Strength Tablets
Tylenol Gelcaps
Tylenol Infants Drops
Tylenol Infants Suspension Drops
Tylenol Junior Strength Caplets
Tylenol Junior Strength Chewable Tablets
Tylenol Regular Strength Caplets
Tylenol Regular Strength Tablets
Tylenol Tablets
Tylex
Tylex CD
Tylol
Tylox
Tylox-325
Tymol
Ultracet
Upsanol
Utragin
Valadol
Valgesic
Valorin
Valorin Extra
Vanquish
Veralgina
Vermidon
Verpol
Viclor Richet
Vicodin
Vicodin Es
Vicodin Hp
Vips
Viruflu
Vivimed
Volpan
Wygesic
Zatinol
Zolben
Chemical FormulaC8H9NO2
Average Molecular Mass151.163 g/mol
Monoisotopic Mass151.063 g/mol
CAS Registry Number103-90-2
IUPAC NameN-(4-hydroxyphenyl)acetamide
Traditional Nameacetaminophen
SMILESCC(O)=NC1=CC=C(O)C=C1
InChI IdentifierInChI=1S/C8H9NO2/c1-6(10)9-7-2-4-8(11)5-3-7/h2-5,11H,1H3,(H,9,10)
InChI KeyInChIKey=RZVAJINKPMORJF-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as 1-hydroxy-2-unsubstituted benzenoids. These are phenols that are unsubstituted at the 2-position.
KingdomOrganic compounds
Super ClassBenzenoids
ClassPhenols
Sub Class1-hydroxy-2-unsubstituted benzenoids
Direct Parent1-hydroxy-2-unsubstituted benzenoids
Alternative Parents
Substituents
  • 1-hydroxy-2-unsubstituted benzenoid
  • Monocyclic benzene moiety
  • Organic 1,3-dipolar compound
  • Propargyl-type 1,3-dipolar organic compound
  • Carboximidic acid derivative
  • Carboximidic acid
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue Locations
  • All Tissues
PathwaysNot Available
Applications
Biological Roles
Chemical Roles
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point169-171°C
Boiling PointNot Available
Solubility1.4E+004 mg/L (at 25°C)
LogP0.46
Predicted Properties
PropertyValueSource
Water Solubility4.15 g/LALOGPS
logP0.51ALOGPS
logP0.91ChemAxon
logS-1.6ALOGPS
pKa (Strongest Acidic)9.46ChemAxon
pKa (Strongest Basic)-4.4ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area49.33 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity42.9 m³·mol⁻¹ChemAxon
Polarizability15.52 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-0a4i-4971200000-17e6e1373f10ba4ec1382014-06-16View Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0a4i-1900000000-df97f74a81da3a46a6972017-09-12View Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0a4i-4900000000-ef277124e1b50b5f010e2017-09-12View Spectrum
GC-MSGC-MS Spectrum - CI-B (Non-derivatized)splash10-0udi-0900000000-7aa6a54b74b345d91e372017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-0a4i-4971200000-17e6e1373f10ba4ec1382017-09-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0a4i-3900000000-070b8ab49f93898e0aa42017-08-28View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-05gl-8930000000-76d6dca6afdf5945dba12017-10-06View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0zfr-0900000000-125e44ce332576a1e1552017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0udi-0900000000-7e46df4b4b653c90c2582017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0udi-0900000000-bb6e34d2d574a249d7212017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0udi-0900000000-2f45dd7efce38361f8062017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0pb9-0900000000-e48b48d64b6b985ab4552017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0a4i-0900000000-b72b0e33fd35512fe6de2017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0a4i-0900000000-97bcaa95f26159307d032017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0udi-0900000000-c50b4b79792e2c2e68f92017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0udi-0900000000-7e46df4b4b653c90c2582017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0udi-0900000000-2b07cd2813d3f23e88f12017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0pb9-0900000000-5b92f09589afe838f23a2017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0a4i-0900000000-f0ca5ff6526b9f0050342017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0udi-0900000000-7e45ef71674dcdde90682017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 15V, Negativesplash10-0a4i-0900000000-f6d6bd9ad3bc874fabd52021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-0a4i-0900000000-7ec733f46e03a5a79fc42021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 30V, Negativesplash10-0udi-0900000000-bb6e34d2d574a249d7212021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 45V, Negativesplash10-0udi-0900000000-2f45dd7efce38361f8062021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 30V, Negativesplash10-0udi-0900000000-7e46df4b4b653c90c2582021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-0zfr-0900000000-125e44ce332576a1e1552021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 60V, Negativesplash10-0pb9-0900000000-e48b48d64b6b985ab4552021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 75V, Negativesplash10-0a4i-0900000000-b72b0e33fd35512fe6de2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 45V, Negativesplash10-0udi-0900000000-2b07cd2813d3f23e88f12021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 90V, Negativesplash10-0a4i-0900000000-97bcaa95f26159307d032021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 60V, Negativesplash10-0pb9-0900000000-5b92f09589afe838f23a2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 75V, Negativesplash10-0a4i-0900000000-f0ca5ff6526b9f0050342021-09-20View Spectrum
MSMass Spectrum (Electron Ionization)splash10-0a4i-4900000000-ffdd0f8a1e6e450fc1622014-09-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, 5%_DMSO, experimental)Not Available2012-12-04View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, DMSO-d6, experimental)Not Available2014-09-20View Spectrum
1D NMR13C NMR Spectrum (1D, 22.53 MHz, DMSO-d6, experimental)Not Available2014-09-23View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-16View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)Not Available2012-12-05View Spectrum
Toxicity Profile
Route of ExposureOral, rapid and almost complete.
Mechanism of ToxicityParacetamol toxicity is one of the most common causes of poisoning worldwide. The toxic effects of acetaminophen are due to a minor alkylating metabolite (N-acetyl-p-benzo-quinone imine – also known as NAPQI), not acetaminophen itself nor any of the other major metabolites. Cytochromes P450 2E1 and 3A4 convert approximately 5% of paracetamol to NAPQI. This toxic metabolite reacts with sulfhydryl groups on proteins and with glutathione (GSH). NAPQI depletes the liver's natural antioxidant glutathione and directly damages cells in the liver, leading to liver failure. In animal studies, hepatic glutathione must be depleted to less than 70% of normal levels before hepatotoxicity occurs. More specifically, oxidation by NAPQI of GSH to GSSG (oxidized glutathione) and the reduction of GSSG back to GSH by the NADPH-dependent glutathione reductase appear to be responsible for the rapid oxidation of NADPH that occurs in hepatocytes incubated with NAPQI. Risk factors for toxicity include excessive chronic alcohol intake, fasting or anorexia nervosa, and the use of certain drugs such as isoniazid. At usual doses, paracetamol is quickly detoxified by combining irreversibly with the sulfhydryl group of glutathione to produce a non-toxic conjugate that is eventually excreted by the kidneys. The toxic dose of paracetamol is highly variable.
MetabolismAcetaminophen primarily undergoes glucuronidation (45-55% of the dose) in which this process is facilitated by UGT1A1, UGT1A6, UGT1A9, UGT2B15 in the liver or UGT1A10 in the gut. 30-35% of the dose undergoes sulfation. This biotransformation is facilitated by SULT1A1, SULT1A3, SULT1A4, SULT1E1 and SULT2A1. A small percentage of acetaminophen is oxidized by CYP2E1 to form N-acetyl-p-benzo-quinone imine (NAPQI), a toxic metabolite which is then conjugated to glutathione and excreted renally. Studies suggest that CYP3A4 and CYP2E1 are the primary cytochrome P450 isozymes responsible for the generation of toxic metabolites. Accumulation of NAPQI may occur if primary metabolic pathways are saturated. Acetaminophen is metabolized primarily in the liver, where most of it is converted to inactive compounds by conjugation with sulfate and glucuronide, and then excreted by the kidneys. Only a small portion is metabolized via the hepatic cytochrome P450 enzyme system. The toxic effects of acetaminophen are due to a minor alkylating metabolite (N-acetyl-p-benzo-quinone imine), not acetaminophen itself nor any of the major metabolites. This toxic metabolite reacts with sulfhydryl groups. At usual doses, it is quickly detoxified by combining irreversibly with the sulfhydryl group of glutathione to produce a non-toxic conjugate that is eventually excreted by the kidneys. The toxic dose of paracetamol is highly variable. Route of Elimination: Approximately 80% of acetaminophen is excreted in the urine after conjugation and about 3% is excreted unchanged. Half Life: 1 to 4 hours
Toxicity ValuesLD50: 338 mg/kg (Oral, Mouse) (1) LD50: 1944 mg/kg (Oral, Rat) (1) In adults, single doses above 10 grams or 200 mg/kg of bodyweight, whichever is lower, have a reasonable likelihood of causing toxicity.
Lethal Dose25 g for an adult human. (1)
Carcinogenicity (IARC Classification)3, not classifiable as to its carcinogenicity to humans. (33)
Uses/SourcesAn over-the-counter analgesic (pain reliever) and antipyretic (fever reducer). It is commonly used for the relief of fever, headaches, and other minor aches and pains, and is a major ingredient in numerous cold and flu remedies.
Minimum Risk LevelNot Available
Health EffectsSkin rashes, blood disorders and a swollen pancreas have occasionally happened in people taking the drug on a regular basis for a long time.
SymptomsWhen taken at the recommended dose, side-effects of paracetamol are rare. Skin rashes, blood disorders and a swollen pancreas have occasionally happened in people taking the drug on a regular basis for a long time. The signs and symptoms of paracetamol toxicity occur in three phases. The first phase begins within hours of overdose, and consists of nausea, vomiting, pallor, and sweating. Rarely, after massive overdoses, patients may develop symptoms of metabolic acidosis and coma early in the course of poisoning.The second phase occurs between 24 and 72 hours following overdose and consists of signs of increasing liver damage. In general, damage occurs in hepatocytes as they metabolize the paracetamol. The individual may experience right upper quadrant pain. Acute kidney failure may also occur during this phase, typically caused by either hepatorenal syndrome or multiple organ dysfunction syndrome. The third phase follows at 3 to 5 days, and is marked by complications of massive hepatic necrosis leading to fulminant hepatic failure with complications of coagulation defects, hypoglycemia, kidney failure, hepatic encephalopathy, cerebral edema, sepsis, multiple organ failure, and death.
TreatmentIn adults, the initial treatment for paracetamol overdose is gastrointestinal decontamination. Paracetamol absorption from the gastrointestinal tract is complete within two hours under normal circumstances, so decontamination is most helpful if performed within this timeframe. Gastric lavage, better known as stomach pumping, may be considered if the amount ingested is potentially life-threatening and the procedure can be performed within 60 minutes of ingestion. Acetylcysteine, when used early in the course of treatment, reduces morbidity and virtually eliminating mortality associated with even a massive acetaminophen overdose. (37) In patients who develop fulminant hepatic failure or who are otherwise expected to die from liver failure, the mainstay of management is liver transplantation.
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDDB00316
HMDB IDHMDB01859
PubChem Compound ID1983
ChEMBL IDCHEMBL112
ChemSpider ID1906
KEGG IDC06804
UniProt IDNot Available
OMIM ID
ChEBI ID2386
BioCyc IDCPD-7669
CTD IDD000082
Stitch IDParacetamol
PDB IDTYL
ACToR ID7
Wikipedia LinkAcetaminophen
References
Synthesis Reference

Jeffrey L. Finnan, Rudolph E. Lisa, Douglass N. Schmidt, “Process for preparing spray dried acetaminophen powder and the powder prepared thereby.” U.S. Patent US4710519, issued October, 1975.

MSDSLink
General References
  1. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6. Epub 2007 Nov 29. [18048412 ]
  2. Kis B, Snipes JA, Busija DW: Acetaminophen and the cyclooxygenase-3 puzzle: sorting out facts, fictions, and uncertainties. J Pharmacol Exp Ther. 2005 Oct;315(1):1-7. Epub 2005 May 6. [15879007 ]
  3. Aronoff DM, Oates JA, Boutaud O: New insights into the mechanism of action of acetaminophen: Its clinical pharmacologic characteristics reflect its inhibition of the two prostaglandin H2 synthases. Clin Pharmacol Ther. 2006 Jan;79(1):9-19. [16413237 ]
  4. Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S: Paracetamol: new vistas of an old drug. CNS Drug Rev. 2006 Fall-Winter;12(3-4):250-75. [17227290 ]
  5. Graham GG, Scott KF: Mechanism of action of paracetamol. Am J Ther. 2005 Jan-Feb;12(1):46-55. [15662292 ]
  6. Ohki S, Ogino N, Yamamoto S, Hayaishi O: Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. J Biol Chem. 1979 Feb 10;254(3):829-36. [104998 ]
  7. Graham GG, Scott KF, Day RO: Tolerability of paracetamol. Drug Saf. 2005;28(3):227-40. [15733027 ]
  8. Barden J, Edwards J, Moore A, McQuay H: Single dose oral paracetamol (acetaminophen) for postoperative pain. Cochrane Database Syst Rev. 2004;(1):CD004602. [14974073 ]
  9. Jaeschke H: Role of inflammation in the mechanism of acetaminophen-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 2005 Oct;1(3):389-97. [16863451 ]
  10. Jan YH, Heck DE, Dragomir AC, Gardner CR, Laskin DL, Laskin JD: Acetaminophen reactive intermediates target hepatic thioredoxin reductase. Chem Res Toxicol. 2014 May 19;27(5):882-94. doi: 10.1021/tx5000443. Epub 2014 Apr 4. [24661219 ]
  11. Qiu Y, Benet LZ, Burlingame AL: Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem. 1998 Jul 10;273(28):17940-53. [9651401 ]
  12. Albano E, Rundgren M, Harvison PJ, Nelson SD, Moldeus P: Mechanisms of N-acetyl-p-benzoquinone imine cytotoxicity. Mol Pharmacol. 1985 Sep;28(3):306-11. [4033631 ]
  13. Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, Simmons DL: COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13926-31. Epub 2002 Sep 19. [12242329 ]
  14. Adjei AA, Gaedigk A, Simon SD, Weinshilboum RM, Leeder JS: Interindividual variability in acetaminophen sulfation by human fetal liver: implications for pharmacogenetic investigations of drug-induced birth defects. Birth Defects Res A Clin Mol Teratol. 2008 Mar;82(3):155-65. doi: 10.1002/bdra.20535. [18232020 ]
  15. Hazai E, Vereczkey L, Monostory K: Reduction of toxic metabolite formation of acetaminophen. Biochem Biophys Res Commun. 2002 Mar 8;291(4):1089-94. [11866476 ]
  16. Muldrew KL, James LP, Coop L, McCullough SS, Hendrickson HP, Hinson JA, Mayeux PR: Determination of acetaminophen-protein adducts in mouse liver and serum and human serum after hepatotoxic doses of acetaminophen using high-performance liquid chromatography with electrochemical detection. Drug Metab Dispos. 2002 Apr;30(4):446-51. [11901099 ]
  17. Bales JR, Nicholson JK, Sadler PJ: Two-dimensional proton nuclear magnetic resonance "maps" of acetaminophen metabolites in human urine. Clin Chem. 1985 May;31(5):757-62. [3987005 ]
  18. van der Marel CD, Anderson BJ, Pluim MA, de Jong TH, Gonzalez A, Tibboel D: Acetaminophen in cerebrospinal fluid in children. Eur J Clin Pharmacol. 2003 Aug;59(4):297-302. Epub 2003 Jul 4. [12845506 ]
  19. Watari N, Iwai M, Kaneniwa N: Pharmacokinetic study of the fate of acetaminophen and its conjugates in rats. J Pharmacokinet Biopharm. 1983 Jun;11(3):245-72. [6644552 ]
  20. Kunkel A, Watzig H: Micellar electrokinetic capillary chromatography as a powerful tool for pharmacological investigations without sample pretreatment: a precise technique providing cost advantages and limits of detection to the low nanomolar range. Electrophoresis. 1999 Sep;20(12):2379-89. [10499329 ]
  21. Vanbinst R, Koenig J, Di Fazio V, Hassoun A: Bile analysis of drugs in postmortem cases. Forensic Sci Int. 2002 Aug 14;128(1-2):35-40. [12208019 ]
  22. Quattrone AJ, Putnam RS: A single liquid-chromatographic procedure for therapeutic monitoring of theophylline, acetaminophen, or ethosuximide. Clin Chem. 1981 Jan;27(1):129-32. [7004665 ]
  23. Smilgin Z, Drozdzik M, Gawronska-Szklarz B, Wojcicki J, Tustanowski S, Gornik W: [Pharmacokinetics of acetaminophen in individuals occupationally exposed to polyvinyl chloride modified with plasticizers]. Med Pr. 1993;44(5):423-9. [8107555 ]
  24. Griener JC, Msall ME, Cooke RE, Corcoran GB: Noninvasive determination of acetaminophen disposition in Down's syndrome. Clin Pharmacol Ther. 1990 Nov;48(5):520-8. [2146059 ]
  25. Mohammadi M, Mohebbi MR, Naderi F: CSF Glucose Concentrations in Infants with Febrile Convulsions and the Possible Effect of Acetaminophen. Indian Pediatr. 2003 Dec;40(12):1183-6. [14722369 ]
  26. Munsterhjelm E, Munsterhjelm NM, Niemi TT, Ylikorkala O, Neuvonen PJ, Rosenberg PH: Dose-dependent inhibition of platelet function by acetaminophen in healthy volunteers. Anesthesiology. 2005 Oct;103(4):712-7. [16192763 ]
  27. de Morais SM, Uetrecht JP, Wells PG: Decreased glucuronidation and increased bioactivation of acetaminophen in Gilbert's syndrome. Gastroenterology. 1992 Feb;102(2):577-86. [1732127 ]
  28. Findlay JW, DeAngelis RL, Kearney MF, Welch RM, Findlay JM: Analgesic drugs in breast milk and plasma. Clin Pharmacol Ther. 1981 May;29(5):625-33. [7214793 ]
  29. Lifshitz M, Weinstein O, Gavrilov V, Rosenthal G, Lifshitz T: Acetaminophen (paracetamol) levels in human tears. Ther Drug Monit. 1999 Oct;21(5):544-6. [10519453 ]
  30. Bailey DN: Relative binding of acetaminophen, lidocaine, phenobarbital, phenytoin, quinidine, and theophylline to human tissues in vitro. J Anal Toxicol. 1997 Jan-Feb;21(1):1-4. [9013284 ]
  31. Gandia P, Bareille MP, Saivin S, Le-Traon AP, Lavit M, Guell A, Houin G: Influence of simulated weightlessness on the oral pharmacokinetics of acetaminophen as a gastric emptying probe in man: a plasma and a saliva study. J Clin Pharmacol. 2003 Nov;43(11):1235-43. [14551178 ]
  32. McEvoy GK (ed) (2007). American Hospital Formulary Service - Drug Information 2007. Bethesda, MD: American Society of Health-System Pharmacists.
  33. International Agency for Research on Cancer (2014). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. [Link]
  34. Beaufort-Jasper Water & Sewer Authority (2008). UL Drinking Water Laboratory. [Link]
  35. Wikipedia. Acetaminophen. Last Updated 8 August 2009. [Link]
  36. Drugs.com [Link]
  37. RxList: The Internet Drug Index (2009). [Link]
Gene Regulation
Up-Regulated Genes
GeneGene SymbolGene IDInteractionChromosomeDetails
Down-Regulated Genes
GeneGene SymbolGene IDInteractionChromosomeDetails

Targets

General Function:
Prostaglandin-endoperoxide synthase activity
Specific Function:
Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and brain, and in pathological conditions, such as in cancer. PTGS2 is responsible for production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays important roles in modulating motility, proliferation and resistance to apoptosis.
Gene Name:
PTGS2
Uniprot ID:
P35354
Molecular Weight:
68995.625 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory>10 uMNot AvailableBindingDB 26197
IC50141 uMNot AvailableBindingDB 26197
References
  1. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6. Epub 2007 Nov 29. [18048412 ]
  2. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  3. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
  4. Lee YS, Kim H, Brahim JS, Rowan J, Lee G, Dionne RA: Acetaminophen selectively suppresses peripheral prostaglandin E2 release and increases COX-2 gene expression in a clinical model of acute inflammation. Pain. 2007 Jun;129(3):279-86. Epub 2006 Dec 18. [17175104 ]
  5. Hinz B, Cheremina O, Brune K: Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. FASEB J. 2008 Feb;22(2):383-90. Epub 2007 Sep 20. [17884974 ]
  6. Weinheimer EM, Jemiolo B, Carroll CC, Harber MP, Haus JM, Burd NA, LeMoine JK, Trappe SW, Trappe TA: Resistance exercise and cyclooxygenase (COX) expression in human skeletal muscle: implications for COX-inhibiting drugs and protein synthesis. Am J Physiol Regul Integr Comp Physiol. 2007 Jun;292(6):R2241-8. Epub 2007 Feb 22. [17322116 ]
  7. Sinning C, Watzer B, Coste O, Nusing RM, Ott I, Ligresti A, Di Marzo V, Imming P: New analgesics synthetically derived from the paracetamol metabolite N-(4-hydroxyphenyl)-(5Z,8Z,11Z,14Z)-icosatetra-5,8,11,14-enamide. J Med Chem. 2008 Dec 25;51(24):7800-5. doi: 10.1021/jm800807k. [19053765 ]
  8. Cryer B, Feldman M: Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. Am J Med. 1998 May;104(5):413-21. [9626023 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. Can hydrates cyanamide to urea.
Gene Name:
CA1
Uniprot ID:
P00915
Molecular Weight:
28870.0 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory10 uMNot AvailableBindingDB 26197
References
  1. Innocenti A, Hilvo M, Scozzafava A, Parkkila S, Supuran CT: Carbonic anhydrase inhibitors: Inhibition of the new membrane-associated isoform XV with phenols. Bioorg Med Chem Lett. 2008 Jun 15;18(12):3593-6. doi: 10.1016/j.bmcl.2008.04.077. Epub 2008 May 4. [18501600 ]
  2. Innocenti A, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem. 2008 Aug 1;16(15):7424-8. doi: 10.1016/j.bmc.2008.06.013. Epub 2008 Jun 13. [18579385 ]
General Function:
Zinc ion binding
Specific Function:
Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye. Contributes to intracellular pH regulation in the duodenal upper villous epithelium during proton-coupled peptide absorption. Stimulates the chloride-bicarbonate exchange activity of SLC26A6.
Gene Name:
CA2
Uniprot ID:
P00918
Molecular Weight:
29245.895 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory6.2 uMNot AvailableBindingDB 26197
References
  1. Innocenti A, Hilvo M, Scozzafava A, Parkkila S, Supuran CT: Carbonic anhydrase inhibitors: Inhibition of the new membrane-associated isoform XV with phenols. Bioorg Med Chem Lett. 2008 Jun 15;18(12):3593-6. doi: 10.1016/j.bmcl.2008.04.077. Epub 2008 May 4. [18501600 ]
  2. Innocenti A, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem. 2008 Aug 1;16(15):7424-8. doi: 10.1016/j.bmc.2008.06.013. Epub 2008 Jun 13. [18579385 ]
General Function:
Prostaglandin-endoperoxide synthase activity
Specific Function:
Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Involved in the constitutive production of prostanoids in particular in the stomach and platelets. In gastric epithelial cells, it is a key step in the generation of prostaglandins, such as prostaglandin E2 (PGE2), which plays an important role in cytoprotection. In platelets, it is involved in the generation of thromboxane A2 (TXA2), which promotes platelet activation and aggregation, vasoconstriction and proliferation of vascular smooth muscle cells.
Gene Name:
PTGS1
Uniprot ID:
P23219
Molecular Weight:
68685.82 Da
References
  1. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6. Epub 2007 Nov 29. [18048412 ]
  2. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]
General Function:
Protein n-terminus binding
Specific Function:
Required for leukotriene biosynthesis by ALOX5 (5-lipoxygenase). Anchors ALOX5 to the membrane. Binds arachidonic acid, and could play an essential role in the transfer of arachidonic acid to ALOX5. Binds to MK-886, a compound that blocks the biosynthesis of leukotrienes.
Gene Name:
ALOX5AP
Uniprot ID:
P20292
Molecular Weight:
18156.96 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC5044 uMNot AvailableBindingDB 26197
References
  1. Friesen RW, Mancini JA: Microsomal prostaglandin E2 synthase-1 (mPGES-1): a novel anti-inflammatory therapeutic target. J Med Chem. 2008 Jul 24;51(14):4059-67. doi: 10.1021/jm800197b. Epub 2008 May 7. [18459759 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide.
Gene Name:
CA12
Uniprot ID:
O43570
Molecular Weight:
39450.615 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory4.1 uMNot AvailableBindingDB 26197
References
  1. Innocenti A, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem. 2008 Aug 1;16(15):7424-8. doi: 10.1016/j.bmc.2008.06.013. Epub 2008 Jun 13. [18579385 ]
General Function:
Metal ion binding
Specific Function:
Reversible hydration of carbon dioxide.
Gene Name:
CA14
Uniprot ID:
Q9ULX7
Molecular Weight:
37667.37 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory10.6 uMNot AvailableBindingDB 26197
References
  1. Innocenti A, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem. 2008 Aug 1;16(15):7424-8. doi: 10.1016/j.bmc.2008.06.013. Epub 2008 Jun 13. [18579385 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide.
Gene Name:
CA3
Uniprot ID:
P07451
Molecular Weight:
29557.215 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory7.1 uMNot AvailableBindingDB 26197
References
  1. Innocenti A, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem. 2008 Aug 1;16(15):7424-8. doi: 10.1016/j.bmc.2008.06.013. Epub 2008 Jun 13. [18579385 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. May stimulate the sodium/bicarbonate transporter activity of SLC4A4 that acts in pH homeostasis. It is essential for acid overload removal from the retina and retina epithelium, and acid release in the choriocapillaris in the choroid.
Gene Name:
CA4
Uniprot ID:
P22748
Molecular Weight:
35032.075 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory11.4 uMNot AvailableBindingDB 26197
References
  1. Innocenti A, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem. 2008 Aug 1;16(15):7424-8. doi: 10.1016/j.bmc.2008.06.013. Epub 2008 Jun 13. [18579385 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. Low activity.
Gene Name:
CA5A
Uniprot ID:
P35218
Molecular Weight:
34750.21 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory802 uMNot AvailableBindingDB 26197
References
  1. Innocenti A, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem. 2008 Aug 1;16(15):7424-8. doi: 10.1016/j.bmc.2008.06.013. Epub 2008 Jun 13. [18579385 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide.
Gene Name:
CA5B
Uniprot ID:
Q9Y2D0
Molecular Weight:
36433.43 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory296 uMNot AvailableBindingDB 26197
References
  1. Innocenti A, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem. 2008 Aug 1;16(15):7424-8. doi: 10.1016/j.bmc.2008.06.013. Epub 2008 Jun 13. [18579385 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. Its role in saliva is unknown.
Gene Name:
CA6
Uniprot ID:
P23280
Molecular Weight:
35366.615 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory658 uMNot AvailableBindingDB 26197
References
  1. Innocenti A, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem. 2008 Aug 1;16(15):7424-8. doi: 10.1016/j.bmc.2008.06.013. Epub 2008 Jun 13. [18579385 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide.
Gene Name:
CA7
Uniprot ID:
P43166
Molecular Weight:
29658.235 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory9.1 uMNot AvailableBindingDB 26197
References
  1. Innocenti A, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem. 2008 Aug 1;16(15):7424-8. doi: 10.1016/j.bmc.2008.06.013. Epub 2008 Jun 13. [18579385 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. Participates in pH regulation. May be involved in the control of cell proliferation and transformation. Appears to be a novel specific biomarker for a cervical neoplasia.
Gene Name:
CA9
Uniprot ID:
Q16790
Molecular Weight:
49697.36 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory70.7 uMNot AvailableBindingDB 26197
References
  1. Innocenti A, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem. 2008 Aug 1;16(15):7424-8. doi: 10.1016/j.bmc.2008.06.013. Epub 2008 Jun 13. [18579385 ]
General Function:
Vitamin d 24-hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP1A1
Uniprot ID:
P04798
Molecular Weight:
58164.815 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Dissociation19.1 uMNot AvailableBindingDB 26197
References
  1. Rosales-Hernandez MC, Mendieta-Wejebe JE, Trujillo-Ferrara JG, Correa-Basurto J: Homology modeling and molecular dynamics of CYP1A1 and CYP2B1 to explore the metabolism of aryl derivatives by docking and experimental assays. Eur J Med Chem. 2010 Nov;45(11):4845-55. doi: 10.1016/j.ejmech.2010.07.055. Epub 2010 Aug 14. [20813430 ]
General Function:
Oxygen transporter activity
Specific Function:
Serves as a reserve supply of oxygen and facilitates the movement of oxygen within muscles.
Gene Name:
MB
Uniprot ID:
P02144
Molecular Weight:
17183.725 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC502.3 uMNot AvailableBindingDB 26197
References
  1. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007 Jan;35(Database issue):D198-201. Epub 2006 Dec 1. [17145705 ]
General Function:
Electron carrier activity
Specific Function:
Not Available
Gene Name:
ALDH2
Uniprot ID:
P05091
Molecular Weight:
56380.93 Da
General Function:
Steroid hydroxylase activity
Specific Function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
CYP2E1
Uniprot ID:
P05181
Molecular Weight:
56848.42 Da
General Function:
Vitamin d3 25-hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide (PubMed:11159812). Catalyzes 4-beta-hydroxylation of cholesterol. May catalyze 25-hydroxylation of cholesterol in vitro (PubMed:21576599).
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular Weight:
57342.67 Da
General Function:
Methyltransferase activity
Specific Function:
Not Available
Gene Name:
ALDH1L1
Uniprot ID:
O75891
Molecular Weight:
98828.505 Da
General Function:
Nad+ binding
Specific Function:
Mitochondrial glutamate dehydrogenase that converts L-glutamate into alpha-ketoglutarate. Plays a key role in glutamine anaplerosis by producing alpha-ketoglutarate, an important intermediate in the tricarboxylic acid cycle. May be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate (By similarity).
Gene Name:
GLUD1
Uniprot ID:
P00367
Molecular Weight:
61397.315 Da
General Function:
Manganese ion binding
Specific Function:
This enzyme has 2 functions: it catalyzes the production of glutamine and 4-aminobutanoate (gamma-aminobutyric acid, GABA), the latter in a pyridoxal phosphate-independent manner (By similarity). Essential for proliferation of fetal skin fibroblasts.
Gene Name:
GLUL
Uniprot ID:
P15104
Molecular Weight:
42064.15 Da
General Function:
Sh3 domain binding
Specific Function:
Protects the hemoglobin in erythrocytes from oxidative breakdown.
Gene Name:
GPX1
Uniprot ID:
P07203
Molecular Weight:
22087.94 Da
General Function:
Nad binding
Specific Function:
Not Available
Gene Name:
GPD1
Uniprot ID:
P21695
Molecular Weight:
37567.4 Da
General Function:
Sn-glycerol-3-phosphate:ubiquinone-8 oxidoreductase activity
Specific Function:
Not Available
Gene Name:
GPD2
Uniprot ID:
P43304
Molecular Weight:
80851.99 Da
General Function:
Thioether s-methyltransferase activity
Specific Function:
Functions as thioether S-methyltransferase and is active with a variety of thioethers and the corresponding selenium and tellurium compounds, including 3-methylthiopropionaldehyde, dimethyl selenide, dimethyl telluride, 2-methylthioethylamine, 2-methylthioethanol, methyl-n-propyl sulfide and diethyl sulfide. Plays an important role in the detoxification of selenium compounds (By similarity). Catalyzes the N-methylation of tryptamine and structurally related compounds.
Gene Name:
INMT
Uniprot ID:
O95050
Molecular Weight:
28890.75 Da
General Function:
Toxic substance binding
Specific Function:
Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc.
Gene Name:
ALB
Uniprot ID:
P02768
Molecular Weight:
69365.94 Da
General Function:
Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of phenolic monoamines (neurotransmitters such as dopamine, norepinephrine and serotonin) and phenolic and catechol drugs.
Specific Function:
Amine sulfotransferase activity
Gene Name:
SULT1A3
Uniprot ID:
P0DMM9
Molecular Weight:
34195.96 Da
General Function:
Thioredoxin-disulfide reductase activity
Specific Function:
Isoform 1 may possess glutaredoxin activity as well as thioredoxin reductase activity and induces actin and tubulin polymerization, leading to formation of cell membrane protrusions. Isoform 4 enhances the transcriptional activity of estrogen receptors alpha and beta while isoform 5 enhances the transcriptional activity of the beta receptor only. Isoform 5 also mediates cell death induced by a combination of interferon-beta and retinoic acid.
Gene Name:
TXNRD1
Uniprot ID:
Q16881
Molecular Weight:
70905.58 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC500.023 uMNot AvailableNot Available
General Function:
Thioredoxin-disulfide reductase activity
Specific Function:
Maintains thioredoxin in a reduced state. Implicated in the defenses against oxidative stress. May play a role in redox-regulated cell signaling.
Gene Name:
TXNRD2
Uniprot ID:
Q9NNW7
Molecular Weight:
56506.275 Da
General Function:
Thioredoxin-disulfide reductase activity
Specific Function:
Displays thioredoxin reductase, glutaredoxin and glutathione reductase activities. Catalyzes disulfide bond isomerization. Promotes disulfide bond formation between GPX4 and various sperm proteins and may play a role in sperm maturation by promoting formation of sperm structural components (By similarity).
Gene Name:
TXNRD3
Uniprot ID:
Q86VQ6
Molecular Weight:
70682.52 Da