Tmic
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Toxin, Toxin Target Database.
Record Information
Version2.0
Creation Date2009-03-06 18:58:04 UTC
Update Date2014-12-24 20:21:06 UTC
Accession NumberT3D0097
Identification
Common Name1,1,1-Trichloroethane
ClassSmall Molecule
Description1,1,1-Trichloroethane is generally considered as a polar solvent. Owing to its unsymmetrical structure, it is a superior solvent for organic compounds that do not dissolve well in hydrocarbons such as hexane. It is an excellent solvent for many organic materials and also one of the least toxic of the chlorinated hydrocarbons. Prior to the Montreal Protocol, it was widely used for cleaning metal parts and circuit boards, as a photoresist solvent in the electronics industry, as an aerosol propellant, as a cutting fluid additive, and as a solvent for inks, paints, adhesives and other coatings. 1,1,1-Trichloroethane is marketed with stabilizers since it is unstable with respect to dehydrochlorination and attacks some metals. Stabilizers comprise up to 8% of the formulation, including acid scavengers (epoxides, amines) and complexants. The Montreal Protocol targeted 1,1,1-trichloroethane as one of those compounds responsible for ozone depletion and banned its use beginning in 1996. Since then, its manufacture and use has been phased out throughout most of the world. The organic compound 1,1,1-trichloroethane, also known as methyl chloroform, is a chloroalkane. This colourless, sweet-smelling liquid was once produced industrially in large quantities for use as a solvent. It is regulated by the Montreal Protocol as an ozone-depleting substance and its use is being rapidly phased out.
Compound Type
  • Food Toxin
  • Household Toxin
  • Industrial/Workplace Toxin
  • Metabolite
  • Organic Compound
  • Organochloride
  • Pollutant
  • Solvent
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
1,1,1 Trichloroethane
1,1,1-TCE
1,1,1-Trichloraethan
1,1,1-Trichlorathan
1,1,1-Trichlorethane
1,1,1-Trichloro-2-(O-chlorophenyl)-2-(p-chlorophenyl)ethane
1,1,1-Trichloro-Ethane
1,1,1-Tricloroetano
2-(2-Chlorophenyl)-2-(4-chlorophenyl)-1,1,1-trichloroethane
Aerothene TT
alpha-T
alpha-Trichloroethane
CH3CCl3
Chlorotene
Chlorothane NU
Chlorothene
Chlorten
Cleanite
Distillex DS1
Ethana
Ethana NU
Genklene LB
ICI-CF 2
Inhibisol
Methyl-Chloroform
Methylchloroform
Methyltrichloromethane
Solvethane
Tafclean
Tri-ethane
Trichloro-1,1,1-ethane
Trichloroethane
Trichloromethylmethane
Chemical FormulaC2H3Cl3
Average Molecular Mass133.404 g/mol
Monoisotopic Mass131.930 g/mol
CAS Registry Number71-55-6
IUPAC Name1,1,1-trichloroethane
Traditional Nametrichloroethane
SMILESCC(Cl)(Cl)Cl
InChI IdentifierInChI=1S/C2H3Cl3/c1-2(3,4)5/h1H3
InChI KeyInChIKey=UOCLXMDMGBRAIB-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as organochlorides. Organochlorides are compounds containing a chemical bond between a carbon atom and a chlorine atom.
KingdomOrganic compounds
Super ClassOrganohalogen compounds
ClassOrganochlorides
Sub ClassNot Available
Direct ParentOrganochlorides
Alternative Parents
Substituents
  • Hydrocarbon derivative
  • Organochloride
  • Alkyl halide
  • Alkyl chloride
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Membrane
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
Applications
Biological RolesNot Available
Chemical Roles
Physical Properties
StateLiquid
AppearanceColorless liquid.
Experimental Properties
PropertyValue
Melting Point-30.4°C
Boiling Point74 °C (347°K, 165 °F)
Solubility1.29 mg/mL at 25°C
LogP2.49
Predicted Properties
PropertyValueSource
Water Solubility2.13 g/LALOGPS
logP2.45ALOGPS
logP2.08ChemAxon
logS-1.8ALOGPS
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity26.22 m³·mol⁻¹ChemAxon
Polarizability10.35 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0002-9000000000-acdd1de2f2f494cc9f33View in MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0002-9100000000-93c8b64bf9a3e2f74a6dView in MoNA
GC-MSGC-MS Spectrum - CI-B (Non-derivatized)splash10-0002-9100000000-756b9bd2a76d828e0d45View in MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0002-9000000000-acdd1de2f2f494cc9f33View in MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0002-9100000000-93c8b64bf9a3e2f74a6dView in MoNA
GC-MSGC-MS Spectrum - CI-B (Non-derivatized)splash10-0002-9100000000-756b9bd2a76d828e0d45View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-000t-9600000000-c081dcbb807720cca52eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-001i-0900000000-e0c9bb24f0f03e2e03d6View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-001i-0900000000-e0c9bb24f0f03e2e03d6View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-001i-2900000000-86949d54288e0f2f7c23View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001i-0900000000-069dedae972a3a56c2ffView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-1900000000-6dca5faa37b128ac40a7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9100000000-53cbfa180588956738d7View in MoNA
MSMass Spectrum (Electron Ionization)splash10-0002-9100000000-09ba0e8b7b22dd786338View in MoNA
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
Toxicity Profile
Route of ExposureOral (19); inhalation (19) ; dermal (19)
Mechanism of Toxicity1,1,1-Trichloroethane is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen.
MetabolismUpon first exposure, 1,1,1-trichloroethane is rapidly and efficiently absorbed by the lung, skin, and gastrointestinal tract of humans. 1,1,1-Trichloroethane is distributed by the blood to tissues and organs throughout the body, including to developing fetuses, with preferential distribution to fatty tissues. The predominant pathway of elimination of 1,1,1-trichloroethane in humans, regardless of route of exposure, is exhalation of the unchanged compound. 1,1,1-Trichloroethane is metabolized oxidatively, at low rates, to trichloroethanol and trichloroacetic acid by the cytochrome P-450 mixed-function oxidase system. These metabolites are excreted in the urine, and other minor metabolites (carbon dioxide [CO2] and acetylene) are excreted in expired air. (17)
Toxicity ValuesLD50: 11 240 mg/kg (Oral, Mouse) (17) LD50: 9470 mg/kg (Oral, Guinea pig) (17) LD50: 5660 mg/kg (Oral, Rabbit) (17)
Lethal DoseNot Available
Carcinogenicity (IARC Classification)3, not classifiable as to its carcinogenicity to humans. (20)
Uses/Sources1,1,1-Trichloroethane was often used as a solvent to dissolve other substances, such as glues and paints. In industry, it was widely used to remove oil or grease from manufactured parts. In the home, it is used as an ingredient of products such as spot cleaners, glues, and aerosol sprays. No 1,1,1-trichloroethane is supposed to be manufactured for domestic use in the United States after January 1, 2002, because it affects the ozone layer. Exposure can occur from breathing in air containing it in vapor form, drinking water or eating food containing 1,1,1-trichloroethane. (17)
Minimum Risk LevelAcute Inhalation: 2 ppm (17) Intermediate Inhalation: 0.7 ppm (Gerbil) (17) Intermediate Oral: 20 mg/kg/day (Mouse) (17)
Health EffectsAcute exposure to cholinesterase inhibitors can cause a cholinergic crisis characterized by severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved. Accumulation of ACh at motor nerves causes overstimulation of nicotinic expression at the neuromuscular junction. When this occurs symptoms such as muscle weakness, fatigue, muscle cramps, fasciculation, and paralysis can be seen. When there is an accumulation of ACh at autonomic ganglia this causes overstimulation of nicotinic expression in the sympathetic system. Symptoms associated with this are hypertension, and hypoglycemia. Overstimulation of nicotinic acetylcholine receptors in the central nervous system, due to accumulation of ACh, results in anxiety, headache, convulsions, ataxia, depression of respiration and circulation, tremor, general weakness, and potentially coma. When there is expression of muscarinic overstimulation due to excess acetylcholine at muscarinic acetylcholine receptors symptoms of visual disturbances, tightness in chest, wheezing due to bronchoconstriction, increased bronchial secretions, increased salivation, lacrimation, sweating, peristalsis, and urination can occur. Certain reproductive effects in fertility, growth, and development for males and females have been linked specifically to organophosphate pesticide exposure. Most of the research on reproductive effects has been conducted on farmers working with pesticides and insecticdes in rural areas. In females menstrual cycle disturbances, longer pregnancies, spontaneous abortions, stillbirths, and some developmental effects in offspring have been linked to organophosphate pesticide exposure. Prenatal exposure has been linked to impaired fetal growth and development. Neurotoxic effects have also been linked to poisoning with OP pesticides causing four neurotoxic effects in humans: cholinergic syndrome, intermediate syndrome, organophosphate-induced delayed polyneuropathy (OPIDP), and chronic organophosphate-induced neuropsychiatric disorder (COPIND). These syndromes result after acute and chronic exposure to OP pesticides.
SymptomsSymptoms include cough, sore throat, headache, dizziness, drowsiness, nausea, ataxia, unconsciousness. Dry skin and redness follow dermal exposure, while nausea, vomiting, abdominal pain, and diarrhoea follw ingestion. (19)
TreatmentIf the compound has been ingested, rapid gastric lavage should be performed using 5% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of '-oximes' has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally.
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDHMDB41791
PubChem Compound ID6278
ChEMBL IDCHEMBL16080
ChemSpider ID6042
KEGG IDC18246
UniProt IDNot Available
OMIM ID
ChEBI ID36015
BioCyc IDCPD-8985
CTD IDNot Available
Stitch ID1,1,1-Trichloroethane
PDB IDNot Available
ACToR ID1413
Wikipedia Link1,1,1-trichloroethane
References
Synthesis ReferenceNot Available
MSDST3D0097.pdf
General References
  1. Casciola LA, Ivanetich KM: Metabolism of chloroethanes by rat liver nuclear cytochrome P-450. Carcinogenesis. 1984 May;5(5):543-8. [6722974 ]
  2. He Z, Yang GP, Lu XL: Distributions and sea-to-air fluxes of volatile halocarbons in the East China Sea in early winter. Chemosphere. 2013 Jan;90(2):747-57. doi: 10.1016/j.chemosphere.2012.09.067. Epub 2012 Oct 25. [23102696 ]
  3. Pohland R, Tiemann U: Forskolin-induced cyclic AMP signaling in single adherent bovine oviductal cells: effect of dichlorodiphenyltrichloroethane (DDT) and tris(4-chlorophenyl)methanol (TCPM). Toxicol In Vitro. 2003 Jun;17(3):375-83. [12781216 ]
  4. Brown TJ, Blaustein JD: 1-(o-Chlorophenyl)-1 (p-chlorophenyl)2,2,2-trichloroethane induces functional progestin receptors in the rat hypothalamus and pituitary gland. Endocrinology. 1984 Dec;115(6):2052-8. [6499760 ]
  5. Steinmetz R, Young PC, Caperell-Grant A, Gize EA, Madhukar BV, Ben-Jonathan N, Bigsby RM: Novel estrogenic action of the pesticide residue beta-hexachlorocyclohexane in human breast cancer cells. Cancer Res. 1996 Dec 1;56(23):5403-9. [8968093 ]
  6. Palanza P, Morellini F, Parmigiani S, vom Saal FS: Prenatal exposure to endocrine disrupting chemicals: effects on behavioral development. Neurosci Biobehav Rev. 1999 Nov;23(7):1011-27. [10580314 ]
  7. Noriega NC, Hayes TB: DDT congener effects on secondary sex coloration in the reed frog Hyperolius argus: a partial evaluation of the Hyperolius argus endocrine screen. Comp Biochem Physiol B Biochem Mol Biol. 2000 Jun;126(2):231-7. [10874170 ]
  8. Legler J, van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg B: Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci. 1999 Mar;48(1):55-66. [10330684 ]
  9. Bulger WH, Muccitelli RM, Kupfer D: Interactions of chlorinated hydrocarbon pesticides with the 8S estrogen-binding protein in rat testes. Steroids. 1978 Sep;32(2):165-77. [715816 ]
  10. Bulger WH, Kupfer D: Inhibition of the 1-(o-chlorophenyl)-1-(p-chlorophenyl)-2,2,2-trichloroethane (o,p'DDT)- and estradiol-mediated induction of rat uterine ornithine decarboxylase by prior treatment with o,p'DDT estradiol, and tamoxifen. Arch Biochem Biophys. 1977 Jul;182(1):138-46. [883826 ]
  11. Alawi MA, Ammari N, al-Shuraiki Y: Organochlorine pesticide contaminations in human milk samples from women living in Amman, Jordan. Arch Environ Contam Toxicol. 1992 Aug;23(2):235-9. [1514844 ]
  12. Palanza P, Parmigiani S, vom Saal FS: Effects of prenatal exposure to low doses of diethylstilbestrol, o,p'DDT, and methoxychlor on postnatal growth and neurobehavioral development in male and female mice. Horm Behav. 2001 Sep;40(2):252-65. [11534990 ]
  13. Kupfer D, Bulger WH: A novel in vitro method for demonstrating proestrogens. Metabolism of methoxychlor and o,p'DDT by liver microsomes in the presence of uteri and effects on intracellular distribution of estrogen receptors. Life Sci. 1979 Sep 11;25(11):975-83. [41991 ]
  14. Bulger WH, Kupfer D: Effect of xenobiotic estrogens and structurally related compounds on 2-hydroxylation of estradiol and on other monooxygenase activities in rat liver. Biochem Pharmacol. 1983 Mar 15;32(6):1005-10. [6838646 ]
  15. Aguilar A, Borrell A: Reproductive transfer and variation of body load of organochlorine pollutants with age in fin whales (Balaenoptera physalus). Arch Environ Contam Toxicol. 1994 Nov;27(4):546-54. [7811111 ]
  16. Rumack BH (2009). POISINDEX(R) Information System. Englewood, CO: Micromedex, Inc. CCIS Volume 141, edition expires Aug, 2009.
  17. ATSDR - Agency for Toxic Substances and Disease Registry (2007). Toxicological profile for 1,1,1-trichloroethane. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  18. Wikipedia. 1,1,1-Trichloroethane. Last Updated 26 July 2009. [Link]
  19. International Programme on Chemical Safety (IPCS) INCHEM (2007). Poison Information Monograph for 1,1,1-Trichloroetahne. [Link]
  20. IARC (1979). Monograph of 1,1,1-Trichloroethane. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
Gene Name:
ESR1
Uniprot ID:
P03372
Molecular Weight:
66215.45 Da
References
  1. Taccone-Gallucci M, Manca-di-Villahermosa S, Battistini L, Stuffler RG, Tedesco M, Maccarrone M: N-3 PUFAs reduce oxidative stress in ESRD patients on maintenance HD by inhibiting 5-lipoxygenase activity. Kidney Int. 2006 Apr;69(8):1450-4. [16531984 ]
  2. Luft S, Milki E, Glustrom E, Ampiah-Bonney R, O'Hara P. Binding of Organochloride and Pyrethroid Pesticides To Estrogen Receptors α and β: A Fluorescence Polarization Assay. Biophysical Journal 2009;96(3):444a.
2. DNA
General Function:
Used for biological information storage.
Specific Function:
DNA contains the instructions needed for an organism to develop, survive and reproduce.
Molecular Weight:
2.15 x 1012 Da
References
  1. Turina MP, Colacci A, Grilli S, Mazzullo M, Prodi G, Lattanzi G: Short-term tests of genotoxicity for 1,1,1-trichloroethane. Res Commun Chem Pathol Pharmacol. 1986 Jun;52(3):305-20. [2426748 ]
  2. IARC (1979). Monograph of 1,1,1-Trichloroethane. [Link]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). Isoform beta-cx lacks ligand binding ability and has no or only very low ere binding activity resulting in the loss of ligand-dependent transactivation ability. DNA-binding by ESR1 and ESR2 is rapidly lost at 37 degrees Celsius in the absence of ligand while in the presence of 17 beta-estradiol and 4-hydroxy-tamoxifen loss in DNA-binding at elevated temperature is more gradual.
Gene Name:
ESR2
Uniprot ID:
Q92731
Molecular Weight:
59215.765 Da
References
  1. Taccone-Gallucci M, Manca-di-Villahermosa S, Battistini L, Stuffler RG, Tedesco M, Maccarrone M: N-3 PUFAs reduce oxidative stress in ESRD patients on maintenance HD by inhibiting 5-lipoxygenase activity. Kidney Int. 2006 Apr;69(8):1450-4. [16531984 ]
  2. Luft S, Milki E, Glustrom E, Ampiah-Bonney R, O'Hara P. Binding of Organochloride and Pyrethroid Pesticides To Estrogen Receptors α and β: A Fluorescence Polarization Assay. Biophysical Journal 2009;96(3):444a.
General Function:
Serine hydrolase activity
Specific Function:
Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. Role in neuronal apoptosis.
Gene Name:
ACHE
Uniprot ID:
P22303
Molecular Weight:
67795.525 Da
References
  1. Kukongviriyapan V, Kukongviriyapan U, Stacey NH: Interference with hepatocellular substrate uptake by 1,1,1-trichloroethane and tetrachloroethylene. Toxicol Appl Pharmacol. 1990 Jan;102(1):80-90. [2296773 ]
General Function:
Signal transducer activity
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium.
Gene Name:
ATP2C1
Uniprot ID:
P98194
Molecular Weight:
100576.42 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium.
Gene Name:
ATP2C2
Uniprot ID:
O75185
Molecular Weight:
103186.475 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular Weight:
51325.85 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular Weight:
55164.055 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA4
Uniprot ID:
P48169
Molecular Weight:
61622.645 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Transporter activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular Weight:
52145.645 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA6
Uniprot ID:
Q16445
Molecular Weight:
51023.69 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRB1
Uniprot ID:
P18505
Molecular Weight:
54234.085 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB2
Uniprot ID:
P47870
Molecular Weight:
59149.895 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-gated chloride ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB3
Uniprot ID:
P28472
Molecular Weight:
54115.04 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRD
Uniprot ID:
O14764
Molecular Weight:
50707.835 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRE
Uniprot ID:
P78334
Molecular Weight:
57971.175 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG1
Uniprot ID:
Q8N1C3
Molecular Weight:
53594.49 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRG2
Uniprot ID:
P18507
Molecular Weight:
54161.78 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG3
Uniprot ID:
Q99928
Molecular Weight:
54288.16 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. In the uterus, the function of the receptor appears to be related to tissue contractility. The binding of this pI subunit with other GABA(A) receptor subunits alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone.
Gene Name:
GABRP
Uniprot ID:
O00591
Molecular Weight:
50639.735 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-1 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR1
Uniprot ID:
P24046
Molecular Weight:
55882.91 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-2 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR2
Uniprot ID:
P28476
Molecular Weight:
54150.41 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRR3
Uniprot ID:
A8MPY1
Molecular Weight:
54271.1 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Transmembrane signaling receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRQ
Uniprot ID:
Q9UN88
Molecular Weight:
72020.875 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Pdz domain binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
Gene Name:
ATP2B1
Uniprot ID:
P20020
Molecular Weight:
138754.045 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Protein c-terminus binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
Gene Name:
ATP2B2
Uniprot ID:
Q01814
Molecular Weight:
136875.18 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Pdz domain binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
Gene Name:
ATP2B3
Uniprot ID:
Q16720
Molecular Weight:
134196.025 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Scaffold protein binding
Specific Function:
Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (PubMed:8530416). By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity).
Gene Name:
ATP2B4
Uniprot ID:
P23634
Molecular Weight:
137919.03 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
30. RNA
References
  1. IARC (1979). Monograph of 1,1,1-Trichloroethane. [Link]
General Function:
Protein homodimerization activity
Specific Function:
Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A1
Uniprot ID:
O14983
Molecular Weight:
110251.36 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
S100 protein binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle.
Gene Name:
ATP2A2
Uniprot ID:
P16615
Molecular Weight:
114755.765 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A3
Uniprot ID:
Q93084
Molecular Weight:
113976.23 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A1
Uniprot ID:
P05023
Molecular Weight:
112895.01 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A2
Uniprot ID:
P50993
Molecular Weight:
112264.385 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A3
Uniprot ID:
P13637
Molecular Weight:
111747.51 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Plays a role in sperm motility.
Gene Name:
ATP1A4
Uniprot ID:
Q13733
Molecular Weight:
114165.44 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma membrane.Involved in cell adhesion and establishing epithelial cell polarity.
Gene Name:
ATP1B1
Uniprot ID:
P05026
Molecular Weight:
35061.07 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-2 subunit is not known.Mediates cell adhesion of neurons and astrocytes, and promotes neurite outgrowth.
Gene Name:
ATP1B2
Uniprot ID:
P14415
Molecular Weight:
33366.925 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known.
Gene Name:
ATP1B3
Uniprot ID:
P54709
Molecular Weight:
31512.34 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Transporter activity
Specific Function:
May be involved in forming the receptor site for cardiac glycoside binding or may modulate the transport function of the sodium ATPase.
Gene Name:
FXYD2
Uniprot ID:
P54710
Molecular Weight:
7283.265 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.